Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Modeling glucose and free fatty acid kinetics in glucose and meal tolerance test.

  • Yanjun Li‎ et al.
  • Theoretical biology & medical modelling‎
  • 2016‎

Quantitative evaluation of insulin regulation on plasma glucose and free fatty acid (FFA) in response to external glucose challenge is clinically important to assess the development of insulin resistance (World J Diabetes 1:36-47, 2010). Mathematical minimal models (MMs) based on insulin modified frequently-sampled intravenous glucose tolerance tests (IM-FSIGT) are widely applied to ascertain an insulin sensitivity index (IEEE Rev Biomed Eng 2:54-96, 2009). Furthermore, it is important to investigate insulin regulation on glucose and FFA in postprandial state as a normal physiological condition. A simple way to calculate the appearance rate (Ra) of glucose and FFA would be especially helpful to evaluate glucose and FFA kinetics for clinical applications.


Theory of partial agonist activity of steroid hormones.

  • Carson C Chow‎ et al.
  • AIMS molecular science‎
  • 2015‎

The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site, relative to a concentration limited step (CLS), which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally, the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus, this theory now makes it possible to predict how different cofactors modulate antisteroid PAA, which should be invaluable in developing more selective antagonists.


Intrinsic Dynamics of a Human Gene Reveal the Basis of Expression Heterogeneity.

  • Joseph Rodriguez‎ et al.
  • Cell‎
  • 2019‎

Transcriptional regulation in metazoans occurs through long-range genomic contacts between enhancers and promoters, and most genes are transcribed in episodic "bursts" of RNA synthesis. To understand the relationship between these two phenomena and the dynamic regulation of genes in response to upstream signals, we describe the use of live-cell RNA imaging coupled with Hi-C measurements and dissect the endogenous regulation of the estrogen-responsive TFF1 gene. Although TFF1 is highly induced, we observe short active periods and variable inactive periods ranging from minutes to days. The heterogeneity in inactive times gives rise to the widely observed "noise" in human gene expression and explains the distribution of protein levels in human tissue. We derive a mathematical model of regulation that relates transcription, chromosome structure, and the cell's ability to sense changes in estrogen and predicts that hypervariability is largely dynamic and does not reflect a stable biological state.


Applying compressed sensing to genome-wide association studies.

  • Shashaank Vattikuti‎ et al.
  • GigaScience‎
  • 2014‎

The aim of a genome-wide association study (GWAS) is to isolate DNA markers for variants affecting phenotypes of interest. This is constrained by the fact that the number of markers often far exceeds the number of samples. Compressed sensing (CS) is a body of theory regarding signal recovery when the number of predictor variables (i.e., genotyped markers) exceeds the sample size. Its applicability to GWAS has not been investigated.


Molecular evolution of the transmembrane domains of G protein-coupled receptors.

  • Sarosh N Fatakia‎ et al.
  • PloS one‎
  • 2011‎

G protein-coupled receptors (GPCRs) are a superfamily of integral membrane proteins vital for signaling and are important targets for pharmaceutical intervention in humans. Previously, we identified a group of ten amino acid positions (called key positions), within the seven transmembrane domain (7TM) interhelical region, which had high mutual information with each other and many other positions in the 7TM. Here, we estimated the evolutionary selection pressure at those key positions. We found that the key positions of receptors for small molecule natural ligands were under strong negative selection. Receptors naturally activated by lipids had weaker negative selection in general when compared to small molecule-activated receptors. Selection pressure varied widely in peptide-activated receptors. We used this observation to predict that a subgroup of orphan GPCRs not under strong selection may not possess a natural small-molecule ligand. In the subgroup of MRGX1-type GPCRs, we identified a key position, along with two non-key positions, under statistically significant positive selection.


Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits.

  • Shashaank Vattikuti‎ et al.
  • PLoS genetics‎
  • 2012‎

We used a bivariate (multivariate) linear mixed-effects model to estimate the narrow-sense heritability (h(2)) and heritability explained by the common SNPs (h(g)(2)) for several metabolic syndrome (MetS) traits and the genetic correlation between pairs of traits for the Atherosclerosis Risk in Communities (ARIC) genome-wide association study (GWAS) population. MetS traits included body-mass index (BMI), waist-to-hip ratio (WHR), systolic blood pressure (SBP), fasting glucose (GLU), fasting insulin (INS), fasting trigylcerides (TG), and fasting high-density lipoprotein (HDL). We found the percentage of h(2) accounted for by common SNPs to be 58% of h(2) for height, 41% for BMI, 46% for WHR, 30% for GLU, 39% for INS, 34% for TG, 25% for HDL, and 80% for SBP. We confirmed prior reports for height and BMI using the ARIC population and independently in the Framingham Heart Study (FHS) population. We demonstrated that the multivariate model supported large genetic correlations between BMI and WHR and between TG and HDL. We also showed that the genetic correlations between the MetS traits are directly proportional to the phenotypic correlations.


A Quantitative Evaluation of COVID-19 Epidemiological Models.

  • Osman N Yogurtcu‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2021‎

Quantifying how accurate epidemiological models of COVID-19 forecast the number of future cases and deaths can help frame how to incorporate mathematical models to inform public health decisions. Here we analyze and score the predictive ability of publicly available COVID-19 epidemiological models on the COVID-19 Forecast Hub. Our score uses the posted forecast cumulative distributions to compute the log-likelihood for held-out COVID-19 positive cases and deaths. Scores are updated continuously as new data become available, and model performance is tracked over time. We use model scores to construct ensemble models based on past performance. Our publicly available quantitative framework may aid in improving modeling frameworks, and assist policy makers in selecting modeling paradigms to balance the delicate trade-offs between the economy and public health.


Distributing task-related neural activity across a cortical network through task-independent connections.

  • Christopher M Kim‎ et al.
  • Nature communications‎
  • 2023‎

Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during a decision-making task. Task-related activity, resembling the neural data, emerged across the network, even in the untrained neurons. Analysis of trained networks showed that strong untrained synapses, which were independent of the task and determined the dynamical state of the network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks. Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by spreading the activity from a subset of plastic neurons to the entire network through task-independent strong synapses.


Learning recurrent dynamics in spiking networks.

  • Christopher M Kim‎ et al.
  • eLife‎
  • 2018‎

Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifying the recurrent connectivity with a recursive least squares algorithm provides sufficient flexibility for synaptic and spiking rate dynamics of spiking networks to produce a wide range of spatiotemporal activity. We apply the training method to learn arbitrary firing patterns, stabilize irregular spiking activity in a network of excitatory and inhibitory neurons respecting Dale's law, and reproduce the heterogeneous spiking rate patterns of cortical neurons engaged in motor planning and movement. We identify sufficient conditions for successful learning, characterize two types of learning errors, and assess the network capacity. Our findings show that synaptically-coupled recurrent spiking networks possess a vast computational capability that can support the diverse activity patterns in the brain.


Genomic analysis of diet composition finds novel loci and associations with health and lifestyle.

  • S Fleur W Meddens‎ et al.
  • Molecular psychiatry‎
  • 2021‎

We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.


Kinetically-defined component actions in gene repression.

  • Carson C Chow‎ et al.
  • PLoS computational biology‎
  • 2015‎

Gene repression by transcription factors, and glucocorticoid receptors (GR) in particular, is a critical, but poorly understood, physiological response. Among the many unresolved questions is the difference between GR regulated induction and repression, and whether transcription cofactor action is the same in both. Because activity classifications based on changes in gene product level are mechanistically uninformative, we present a theory for gene repression in which the mechanisms of factor action are defined kinetically and are consistent for both gene repression and induction. The theory is generally applicable and amenable to predictions if the dose-response curve for gene repression is non-cooperative with a unit Hill coefficient, which is observed for GR-regulated repression of AP1LUC reporter induction by phorbol myristate acetate. The theory predicts the mechanism of GR and cofactors, and where they act with respect to each other, based on how each cofactor alters the plots of various kinetic parameters vs. cofactor. We show that the kinetically-defined mechanism of action of each of four factors (reporter gene, p160 coactivator TIF2, and two pharmaceuticals [NU6027 and phenanthroline]) is the same in GR-regulated repression and induction. What differs is the position of GR action. This insight should simplify clinical efforts to differentially modulate factor actions in gene induction vs. gene repression.


Divergent COVID-19 Disease Trajectories Predicted by a DAMP-Centered Immune Network Model.

  • Judy D Day‎ et al.
  • Frontiers in immunology‎
  • 2021‎

COVID-19 presentations range from mild to moderate through severe disease but also manifest with persistent illness or viral recrudescence. We hypothesized that the spectrum of COVID-19 disease manifestations was a consequence of SARS-CoV-2-mediated delay in the pathogen-associated molecular pattern (PAMP) response, including dampened type I interferon signaling, thereby shifting the balance of the immune response to be dominated by damage-associated molecular pattern (DAMP) signaling. To test the hypothesis, we constructed a parsimonious mechanistic mathematical model. After calibration of the model for initial viral load and then by varying a few key parameters, we show that the core model generates four distinct viral load, immune response and associated disease trajectories termed "patient archetypes", whose temporal dynamics are reflected in clinical data from hospitalized COVID-19 patients. The model also accounts for responses to corticosteroid therapy and predicts that vaccine-induced neutralizing antibodies and cellular memory will be protective, including from severe COVID-19 disease. This generalizable modeling framework could be used to analyze protective and pathogenic immune responses to diverse viral infections.


Kinetic competition during the transcription cycle results in stochastic RNA processing.

  • Antoine Coulon‎ et al.
  • eLife‎
  • 2014‎

Synthesis of mRNA in eukaryotes involves the coordinated action of many enzymatic processes, including initiation, elongation, splicing, and cleavage. Kinetic competition between these processes has been proposed to determine RNA fate, yet such coupling has never been observed in vivo on single transcripts. In this study, we use dual-color single-molecule RNA imaging in living human cells to construct a complete kinetic profile of transcription and splicing of the β-globin gene. We find that kinetic competition results in multiple competing pathways for pre-mRNA splicing. Splicing of the terminal intron occurs stochastically both before and after transcript release, indicating there is not a strict quality control checkpoint. The majority of pre-mRNAs are spliced after release, while diffusing away from the site of transcription. A single missense point mutation (S34F) in the essential splicing factor U2AF1 which occurs in human cancers perturbs this kinetic balance and defers splicing to occur entirely post-release.


Deducing the temporal order of cofactor function in ligand-regulated gene transcription: theory and experimental verification.

  • Edward J Dougherty‎ et al.
  • PloS one‎
  • 2012‎

Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1) the steps at which cofactors exert their biological activities and (2) the nature of that activity. Here we show that a new mathematical theory of steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of any two cofactors relative to a concentration limiting step (CLS) and to each other. The predictions of the theory, which can be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR) in U2OS cells. The analysis of TIF2 and sSMRT actions on GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to determine previously unobtainable information about the nature and position of cofactor action in any process displaying first-order Hill plot kinetics are now available.


Dissecting transcriptional amplification by MYC.

  • Zuqin Nie‎ et al.
  • eLife‎
  • 2020‎

Supraphysiological MYC levels are oncogenic. Originally considered a typical transcription factor recruited to E-boxes (CACGTG), another theory posits MYC a global amplifier increasing output at all active promoters. Both models rest on large-scale genome-wide "-omics'. Because the assumptions, statistical parameter and model choice dictates the '-omic' results, whether MYC is a general or specific transcription factor remains controversial. Therefore, an orthogonal series of experiments interrogated MYC's effect on the expression of synthetic reporters. Dose-dependently, MYC increased output at minimal promoters with or without an E-box. Driving minimal promoters with exogenous (glucocorticoid receptor) or synthetic transcription factors made expression more MYC-responsive, effectively increasing MYC-amplifier gain. Mutations of conserved MYC-Box regions I and II impaired amplification, whereas MYC-box III mutations delivered higher reporter output indicating that MBIII limits over-amplification. Kinetic theory and experiments indicate that MYC activates at least two steps in the transcription-cycle to explain the non-linear amplification of transcription that is essential for global, supraphysiological transcription in cancer.


Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila.

  • Amicia D Elliott‎ et al.
  • eLife‎
  • 2021‎

Identifying neural substrates of behavior requires defining actions in terms that map onto brain activity. Brain and muscle activity naturally correlate via the output of motor neurons, but apart from simple movements it has been difficult to define behavior in terms of muscle contractions. By mapping the musculature of the pupal fruit fly and comprehensively imaging muscle activation at single-cell resolution, we here describe a multiphasic behavioral sequence in Drosophila. Our characterization identifies a previously undescribed behavioral phase and permits extraction of major movements by a convolutional neural network. We deconstruct movements into a syllabary of co-active muscles and identify specific syllables that are sensitive to neuromodulatory manipulations. We find that muscle activity shows considerable variability, with sequential increases in stereotypy dependent upon neuromodulation. Our work provides a platform for studying whole-animal behavior, quantifying its variability across multiple spatiotemporal scales, and analyzing its neuromodulatory regulation at cellular resolution.


Dynamics of chromatin accessibility and long-range interactions in response to glucocorticoid pulsing.

  • Diana A Stavreva‎ et al.
  • Genome research‎
  • 2015‎

Although physiological steroid levels are often pulsatile (ultradian), the genomic effects of this pulsatility are poorly understood. By utilizing glucocorticoid receptor (GR) signaling as a model system, we uncovered striking spatiotemporal relationships between receptor loading, lifetimes of the DNase I hypersensitivity sites (DHSs), long-range interactions, and gene regulation. We found that hormone-induced DHSs were enriched within ± 50 kb of GR-responsive genes and displayed a broad spectrum of lifetimes upon hormone withdrawal. These lifetimes dictate the strength of the DHS interactions with gene targets and contribute to gene regulation from a distance. Our results demonstrate that pulsatile and constant hormone stimulations induce unique, treatment-specific patterns of gene and regulatory element activation. These modes of activation have implications for corticosteroid function in vivo and for steroid therapies in various clinical settings.


A kinase-independent activity of Cdk9 modulates glucocorticoid receptor-mediated gene induction.

  • Rong Zhu‎ et al.
  • Biochemistry‎
  • 2014‎

A gene induction competition assay has recently uncovered new inhibitory activities of two transcriptional cofactors, NELF-A and NELF-B, in glucocorticoid-regulated transactivation. NELF-A and -B are also components of the NELF complex, which participates in RNA polymerase II pausing shortly after the initiation of gene transcription. We therefore asked if cofactors (Cdk9 and ELL) best known to affect paused polymerase could reverse the effects of NELF-A and -B. Unexpectedly, Cdk9 and ELL augmented, rather than prevented, the effects of NELF-A and -B. Furthermore, Cdk9 actions are not blocked either by Ckd9 inhibitors (DRB or flavopiridol) or by two Cdk9 mutants defective in kinase activity. The mode and site of action of NELF-A and -B mutants with an altered NELF domain are similarly affected by wild-type and kinase-dead Cdk9. We conclude that Cdk9 is a new modulator of GR action, that Ckd9 and ELL have novel activities in GR-regulated gene expression, that NELF-A and -B can act separately from the NELF complex, and that Cdk9 possesses activities that are independent of Cdk9 kinase activity. Finally, the competition assay has succeeded in ordering the site of action of several cofactors of GR transactivation. Extension of this methodology should be helpful in determining the site and mode of action of numerous additional cofactors and in reducing unwanted side effects.


Computing highly correlated positions using mutual information and graph theory for G protein-coupled receptors.

  • Sarosh N Fatakia‎ et al.
  • PloS one‎
  • 2009‎

G protein-coupled receptors (GPCRs) are a superfamily of seven transmembrane-spanning proteins involved in a wide array of physiological functions and are the most common targets of pharmaceuticals. This study aims to identify a cohort or clique of positions that share high mutual information. Using a multiple sequence alignment of the transmembrane (TM) domains, we calculated the mutual information between all inter-TM pairs of aligned positions and ranked the pairs by mutual information. A mutual information graph was constructed with vertices that corresponded to TM positions and edges between vertices were drawn if the mutual information exceeded a threshold of statistical significance. Positions with high degree (i.e. had significant mutual information with a large number of other positions) were found to line a well defined inter-TM ligand binding cavity for class A as well as class C GPCRs. Although the natural ligands of class C receptors bind to their extracellular N-terminal domains, the possibility of modulating their activity through ligands that bind to their helical bundle has been reported. Such positions were not found for class B GPCRs, in agreement with the observation that there are not known ligands that bind within their TM helical bundle. All identified key positions formed a clique within the MI graph of interest. For a subset of class A receptors we also considered the alignment of a portion of the second extracellular loop, and found that the two positions adjacent to the conserved Cys that bridges the loop with the TM3 qualified as key positions. Our algorithm may be useful for localizing topologically conserved regions in other protein families.


Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection.

  • Yihan Wan‎ et al.
  • Cell‎
  • 2021‎

The activities of RNA polymerase and the spliceosome are responsible for the heterogeneity in the abundance and isoform composition of mRNA in human cells. However, the dynamics of these megadalton enzymatic complexes working in concert on endogenous genes have not been described. Here, we establish a quasi-genome-scale platform for observing synthesis and processing kinetics of single nascent RNA molecules in real time. We find that all observed genes show transcriptional bursting. We also observe large kinetic variation in intron removal for single introns in single cells, which is inconsistent with deterministic splice site selection. Transcriptome-wide footprinting of the U2AF complex, nascent RNA profiling, long-read sequencing, and lariat sequencing further reveal widespread stochastic recursive splicing within introns. We propose and validate a unified theoretical model to explain the general features of transcription and pervasive stochastic splice site selection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: