Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 83 papers

Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation.

  • Wenqing Shui‎ et al.
  • Journal of proteome research‎
  • 2011‎

The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors of Mycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the two mycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid.


Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers.

  • Jerome Mauris‎ et al.
  • PloS one‎
  • 2013‎

Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells.


Mycobacterium tuberculosis Rv3406 is a type II alkyl sulfatase capable of sulfate scavenging.

  • Kimberly M Sogi‎ et al.
  • PloS one‎
  • 2013‎

The genome of Mycobacterium tuberculosis (Mtb) encodes nine putative sulfatases, none of which have a known function or substrate. Here, we characterize Mtb's single putative type II sulfatase, Rv3406, as a non-heme iron (II) and α-ketoglutarate-dependent dioxygenase that catalyzes the oxidation and subsequent cleavage of alkyl sulfate esters. Rv3406 was identified based on its homology to the alkyl sulfatase AtsK from Pseudomonas putida. Using an in vitro biochemical assay, we confirmed that Rv3406 is a sulfatase with a preference for alkyl sulfate substrates similar to those processed by AtsK. We determined the crystal structure of the apo Rv3406 sulfatase at 2.5 Å. The active site residues of Rv3406 and AtsK are essentially superimposable, suggesting that the two sulfatases share the same catalytic mechanism. Finally, we generated an Rv3406 mutant (Δrv3406) in Mtb to study the sulfatase's role in sulfate scavenging. The Δrv3406 strain did not replicate in minimal media with 2-ethyl hexyl sulfate as the sole sulfur source, in contrast to wild type Mtb or the complemented strain. We conclude that Rv3406 is an iron and α-ketoglutarate-dependent sulfate ester dioxygenase that has unique substrate specificity that is likely distinct from other Mtb sulfatases.


Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages.

  • Sarah A Gilmore‎ et al.
  • ACS chemical biology‎
  • 2012‎

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a highly evolved human pathogen characterized by its formidable cell wall. Many unique lipids and glycolipids from the Mtb cell wall are thought to be virulence factors that mediate host-pathogen interactions. An intriguing example is Sulfolipid-1 (SL-1), a sulfated glycolipid that has been implicated in Mtb pathogenesis, although no direct role for SL-1 in virulence has been established. Previously, we described the biochemical activity of the sulfotransferase Stf0 that initiates SL-1 biosynthesis. Here we show that a stf0-deletion mutant exhibits augmented survival in human but not murine macrophages, suggesting that SL-1 negatively regulates the intracellular growth of Mtb in a species-specific manner. Furthermore, we demonstrate that SL-1 plays a role in mediating the susceptibility of Mtb to a human cationic antimicrobial peptide in vitro, despite being dispensable for maintaining overall cell envelope integrity. Thus, we hypothesize that the species-specific phenotype of the stf0 mutant is reflective of differences in antimycobacterial effector mechanisms of macrophages.


A riboswitch-based inducible gene expression system for mycobacteria.

  • Jessica C Seeliger‎ et al.
  • PloS one‎
  • 2012‎

Research on the human pathogen Mycobacterium tuberculosis (Mtb) would benefit from novel tools for regulated gene expression. Here we describe the characterization and application of a synthetic riboswitch-based system, which comprises a mycobacterial promoter for transcriptional control and a riboswitch for translational control. The system was used to induce and repress heterologous protein overexpression reversibly, to create a conditional gene knockdown, and to control gene expression in a macrophage infection model. Unlike existing systems for controlling gene expression in Mtb, the riboswitch does not require the co-expression of any accessory proteins: all of the regulatory machinery is encoded by a short DNA segment directly upstream of the target gene. The inducible riboswitch platform has the potential to be a powerful general strategy for creating customized gene regulation systems in Mtb.


Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement.

  • Spencer A Freeman‎ et al.
  • Cell‎
  • 2018‎

Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.


Physical Principles of Membrane Shape Regulation by the Glycocalyx.

  • Carolyn R Shurer‎ et al.
  • Cell‎
  • 2019‎

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action.

  • Pedro Bule‎ et al.
  • Nature communications‎
  • 2019‎

Sialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry. We show that a recently discovered sialidase family, whose first member EnvSia156 was isolated from hot spring metagenomes, defines an unusual structural fold and active centre constellation, not previously described in sialidases. Consistent with an inverting mechanism, EnvSia156 reveals a His/Asp active center in which the His acts as a Brønsted acid and Asp as a Brønsted base in a single-displacement mechanism. A predominantly hydrophobic aglycone site facilitates accommodation of a variety of 2-linked sialosides; a versatility that offers the potential for glycan hydrolysis across a range of biological and technological platforms.


Click-Chemistry Based High Throughput Screening Platform for Modulators of Ras Palmitoylation.

  • Lakshmi Ganesan‎ et al.
  • Scientific reports‎
  • 2017‎

Palmitoylation is a widespread, reversible lipid modification that has been implicated in regulating a variety of cellular processes. Approximately one thousand proteins are annotated as being palmitoylated, and for some of these, including several oncogenes of the Ras and Src families, palmitoylation is indispensable for protein function. Despite this wealth of disease-relevant targets, there are currently few effective pharmacological tools to interfere with protein palmitoylation. One reason for this lack of development is the dearth of assays to efficiently screen for small molecular inhibitors of palmitoylation. To address this shortcoming, we have developed a robust, high-throughput compatible, click chemistry-based approach to identify small molecules that interfere with the palmitoylation of Ras, a high value therapeutic target that is mutated in up to a third of human cancers. This assay design shows excellent performance in 384-well format and is sensitive to known, non-specific palmitoylation inhibitors. Further, we demonstrate an ideal counter-screening strategy, which relies on a target peptide from an unrelated protein, the Src-family kinase Fyn. The screening approach described here provides an integrated platform to identify specific modulators of palmitoylated proteins, demonstrated here for Ras and Fyn, but potentially applicable to pharmaceutical targets involved in a variety of human diseases.


Cell type-selective secretome profiling in vivo.

  • Wei Wei‎ et al.
  • Nature chemical biology‎
  • 2021‎

Secreted polypeptides are a fundamental axis of intercellular and endocrine communication. However, a global understanding of the composition and dynamics of cellular secretomes in intact mammalian organisms has been lacking. Here, we introduce a proximity biotinylation strategy that enables labeling, detection and enrichment of secreted polypeptides in a cell type-selective manner in mice. We generate a proteomic atlas of hepatocyte, myocyte, pericyte and myeloid cell secretomes by direct purification of biotinylated secreted proteins from blood plasma. Our secretome dataset validates known cell type-protein pairs, reveals secreted polypeptides that distinguish between cell types and identifies new cellular sources for classical plasma proteins. Lastly, we uncover a dynamic and previously undescribed nutrient-dependent reprogramming of the hepatocyte secretome characterized by the increased unconventional secretion of the cytosolic enzyme betaine-homocysteine S-methyltransferase (BHMT). This secretome profiling strategy enables dynamic and cell type-specific dissection of the plasma proteome and the secreted polypeptides that mediate intercellular signaling.


An Acquired and Endogenous Glycocalyx Forms a Bidirectional "Don't Eat" and "Don't Eat Me" Barrier to Phagocytosis.

  • Paul R C Imbert‎ et al.
  • Current biology : CB‎
  • 2021‎

Macrophages continuously survey their environment in search of pathogens or apoptotic corpses or debris. Targets intended for clearance expose ligands that initiate their phagocytosis ("eat me" signals), while others avoid phagocytosis by displaying inhibitory ligands ("don't eat me" signals). We report that such ligands can be obscured by the glycosaminoglycans and glycoproteins that coat pathogenic as well as malignant phagocytic targets. In addition, a reciprocal barrier of self-synthesized or acquired glycocalyx components on the macrophage surface shrouds phagocytic receptors, curtailing their ability to engage particles. The coating layers of macrophages and their targets hinder phagocytosis by both steric and electrostatic means. Their removal by enzymatic means is shown to markedly enhance phagocytic efficiency. In particular, we show that the removal of mucins, which are overexpressed in cancer cells, facilitates their clearance. These results shed light on the physical barriers that modulate phagocytosis, which have been heretofore underappreciated. VIDEO ABSTRACT.


Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx.

  • Leonhard Möckl‎ et al.
  • Developmental cell‎
  • 2019‎

The mammalian glycocalyx is a heavily glycosylated extramembrane compartment found on nearly every cell. Despite its relevance in both health and disease, studies of the glycocalyx remain hampered by a paucity of methods to spatially classify its components. We combine metabolic labeling, bioorthogonal chemistry, and super-resolution localization microscopy to image two constituents of cell-surface glycans, N-acetylgalactosamine (GalNAc) and sialic acid, with 10-20 nm precision in 2D and 3D. This approach enables two measurements: glycocalyx height and the distribution of individual sugars distal from the membrane. These measurements show that the glycocalyx exhibits nanoscale organization on both cell lines and primary human tumor cells. Additionally, we observe enhanced glycocalyx height in response to epithelial-to-mesenchymal transition and to oncogenic KRAS activation. In the latter case, we trace increased height to an effector gene, GALNT7. These data highlight the power of advanced imaging methods to provide molecular and functional insights into glycocalyx biology.


Glycoproteomic landscape and structural dynamics of TIM family immune checkpoints enabled by mucinase SmE.

  • Joann Chongsaritsinsuk‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key checkpoint inhibitors in cancer. However, their dense O-glycosylation remains enigmatic both in terms of glycoproteomic landscape and structural dynamics, primarily due to the challenges associated with studying mucin domains. Here, we present a mucinase (SmE) and demonstrate its ability to selectively cleave along the mucin glycoprotein backbone, similar to others of its kind. Unlike other mucinases, though, SmE harbors the unique ability to cleave at residues bearing extremely complex glycans which enabled improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we performed molecular dynamics (MD) simulations of TIM-3 and -4 to demonstrate how glycosylation affects structural features of these proteins. Overall, we present a powerful workflow to better understand the detailed molecular structures of the mucinome.


Serial measurement of M. tuberculosis in blood from critically-ill patients with HIV-associated tuberculosis.

  • David A Barr‎ et al.
  • EBioMedicine‎
  • 2022‎

Despite being highly prevalent in hospitalised patients with severe HIV-associated tuberculosis (TB) and sepsis, little is known about the mycobacteriology of Mycobacterium tuberculosis bloodstream infection (MTBBSI). We developed methods to serially measure bacillary load in blood and used these to characterise MTBBSI response to anti-TB therapy (ATT) and relationship with mortality.


Systemic delivery of a targeted synthetic immunostimulant transforms the immune landscape for effective tumor regression.

  • Caitlyn L Miller‎ et al.
  • Cell chemical biology‎
  • 2022‎

Promoting immune activation within the tumor microenvironment (TME) is a promising therapeutic strategy to reverse tumor immunosuppression and elicit anti-tumor immunity. To enable tumor-localized immunotherapy following intravenous administration, we chemically conjugated a polyspecific integrin-binding peptide (PIP) to an immunostimulant (Toll-like receptor 9 [TLR9] agonist: CpG) to generate a tumor-targeted immunomodulatory agent, referred to as PIP-CpG. We demonstrate that systemic delivery of PIP-CpG induces tumor regression and enhances therapeutic efficacy compared with untargeted CpG in aggressive murine breast and pancreatic cancer models. Furthermore, PIP-CpG transforms the immune-suppressive TME dominated by myeloid-derived suppressor cells into a lymphocyte-rich TME infiltrated with activated CD8+ T cells, CD4+ T cells, and B cells. Finally, we show that T cells are required for therapeutic efficacy and that PIP-CpG treatment generates tumor-specific CD8+ T cells. These data demonstrate that conjugation to a synthetic tumor-targeted peptide can improve the efficacy of systemically administered immunostimulants and lead to durable anti-tumor immune responses.


Structure-guided mutagenesis of a mucin-selective metalloprotease from Akkermansia muciniphila alters substrate preferences.

  • D Judy Shon‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Akkermansia muciniphila, a mucin-degrading microbe found in the human gut, is often associated with positive health outcomes. The abundance of A. muciniphila is modulated by the presence and accessibility of nutrients, which can be derived from diet or host glycoproteins. In particular, the ability to degrade host mucins, a class of proteins carrying densely O-glycosylated domains, provides a competitive advantage in the sustained colonization of niche mucosal environments. Although A. muciniphila is known to rely on mucins as a carbon and nitrogen source, the enzymatic machinery used by this microbe to process mucins in the gut is not yet fully characterized. Here, we focus on the mucin-selective metalloprotease, Amuc_0627 (AM0627), which is known to cleave between adjacent residues carrying truncated core 1 O-glycans. We showed that this enzyme is capable of degrading purified mucin 2 (MUC2), the major protein component of mucus in the gut. An X-ray crystal structure of AM0627 (1.9 Å resolution) revealed O-glycan-binding residues that are conserved between structurally characterized enzymes from the same family. We further rationalized the substrate cleavage motif using molecular modeling to identify nonconserved glycan-interacting residues. We conclude that mutagenesis of these residues resulted in altered substrate preferences down to the glycan level, providing insight into the structural determinants of O-glycan recognition.


Analyzing nested experimental designs-A user-friendly resampling method to determine experimental significance.

  • Rishikesh U Kulkarni‎ et al.
  • PLoS computational biology‎
  • 2022‎

While hierarchical experimental designs are near-ubiquitous in neuroscience and biomedical research, researchers often do not take the structure of their datasets into account while performing statistical hypothesis tests. Resampling-based methods are a flexible strategy for performing these analyses but are difficult due to the lack of open-source software to automate test construction and execution. To address this, we present Hierarch, a Python package to perform hypothesis tests and compute confidence intervals on hierarchical experimental designs. Using a combination of permutation resampling and bootstrap aggregation, Hierarch can be used to perform hypothesis tests that maintain nominal Type I error rates and generate confidence intervals that maintain the nominal coverage probability without making distributional assumptions about the dataset of interest. Hierarch makes use of the Numba JIT compiler to reduce p-value computation times to under one second for typical datasets in biomedical research. Hierarch also enables researchers to construct user-defined resampling plans that take advantage of Hierarch's Numba-accelerated functions.


Directed Evolution of Genetically Encoded LYTACs for Cell-Mediated Delivery.

  • Jonathan Lee Yang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Lysosome-targeting chimeras (LYTACs) are a promising therapeutic modality to drive the degradation of extracellular proteins. However, early versions of LYTAC contain synthetic glycopeptides that cannot be genetically encoded. Here we present our designs for a fully genetically encodable LYTAC (GELYTAC), making our tool compatible with integration into therapeutic cells for targeted delivery at diseased sites. To achieve this, we replaced the glycopeptide portion of LYTACs with the protein insulin like growth factor 2 (IGF2). After showing initial efficacy with wild type IGF2, we increased the potency of GELYTAC using directed evolution. Subsequently, we demonstrated that our engineered GELYTAC construct not only secretes from HEK293T cells but also from human primary T-cells to drive the uptake of various targets into receiver cells. Immune cells engineered to secrete GELYTAC thus represent a promising avenue for spatially-selective targeted protein degradation.


Chemoenzymatic Fc glycosylation via engineered aldehyde tags.

  • Elizabeth L Smith‎ et al.
  • Bioconjugate chemistry‎
  • 2014‎

Glycoproteins with chemically defined glycosylation sites and structures are important biopharmaceutical targets and critical tools for glycobiology. One approach toward constructing such molecules involves chemical glycosylation of aldehyde-tagged proteins. Here, we report the installation of a genetically encoded aldehyde tag at the internal glycosylation site of the crystallizable fragment (Fc) of IgG1. We replaced the natural Fc N-glycosylation sequon with a five amino-acid sequence that was efficiently converted by recombinant formylglycine generating enzyme in vitro, thereby introducing aldehyde groups for subsequent chemical elaboration. Oxime-linked glycoconjugates were synthesized by conjugating aminooxy N-acetylglucosamine to the modified Fc followed by enzymatic transfer of complex N-glycans from corresponding glycan oxazolines by an EndoS-derived glycosynthase. In this manner we generated specific Fc glycoforms without relying on natural protein glycosylation machineries.


Cyclopropane Modification of Trehalose Dimycolate Drives Granuloma Angiogenesis and Mycobacterial Growth through Vegf Signaling.

  • Eric M Walton‎ et al.
  • Cell host & microbe‎
  • 2018‎

Mycobacterial infection leads to the formation of characteristic immune aggregates called granulomas, a process accompanied by dramatic remodeling of the host vasculature. As granuloma angiogenesis favors the infecting mycobacteria, it may be actively promoted by bacterial determinants during infection. Using Mycobacterium marinum-infected zebrafish as a model, we identify the enzyme proximal cyclopropane synthase of alpha-mycolates (PcaA) as an important bacterial determinant of granuloma-associated angiogenesis. cis-Cyclopropanation of mycobacterial mycolic acids by pcaA drives the activation of host Vegf signaling within granuloma macrophages. Cyclopropanation of the mycobacterial cell wall glycolipid trehalose dimycolate is both required and sufficient to induce robust host angiogenesis. Inducible genetic inhibition of angiogenesis and Vegf signaling during granuloma formation results in bacterial growth deficits. Together, these data reveal a mechanism by which PcaA-mediated cis-cyclopropanation of mycolic acids promotes bacterial growth and dissemination in vivo by eliciting granuloma vascularization and suggest potential approaches for host-directed therapies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: