Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

Sequence polymorphism, segmental recombination and toggling amino acid residues within the DBL3X domain of the VAR2CSA placental malaria antigen.

  • Eldin Talundzic‎ et al.
  • PloS one‎
  • 2012‎

Plasmodium falciparum malaria remains one of the world's foremost health problems, primarily in highly endemic regions such as Sub-Saharan Africa, where it is responsible for substantial morbidity, mortality and economic losses. Malaria is a significant cause of severe disease and death in pregnant women and newborns, with pathogenesis being associated with expression of a unique variant of the multidomain Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) called VAR2CSA. Here, we characterize the polymorphism of the DBL3X domain of VAR2CSA and identify regions under selective pressure among placental parasites from women living in endemic western Kenya. In addition to significant levels of polymorphism, our analysis reveals evidence for diversification through intra-segmental recombination and novel mutations that likely contributed to the high number of unique VAR2CSA sequence types identified in this study. Interestingly, we also identified a number of critical residues that may be implicated in immune evasion through switching (or toggling) to alternative amino acids, including an arginine residue within the predicted binding pocket in subdomain III, which was previously implicated in binding to placental CSA. Overall, these findings are important for understanding parasite diversity in pregnant women and will be useful for identifying epitopes and variants of DBL3X to be included in a vaccine against placental malaria.


Phylogeography of Burkholderia pseudomallei Isolates, Western Hemisphere.

  • Jay E Gee‎ et al.
  • Emerging infectious diseases‎
  • 2017‎

The bacterium Burkholderia pseudomallei causes melioidosis, which is mainly associated with tropical areas. We analyzed single-nucleotide polymorphisms (SNPs) among genome sequences from isolates of B. pseudomallei that originated in the Western Hemisphere by comparing them with genome sequences of isolates that originated in the Eastern Hemisphere. Analysis indicated that isolates from the Western Hemisphere form a distinct clade, which supports the hypothesis that these isolates were derived from a constricted seeding event from Africa. Subclades have been resolved that are associated with specific regions within the Western Hemisphere and suggest that isolates might be correlated geographically with cases of melioidosis. One isolate associated with a former World War II prisoner of war was believed to represent illness 62 years after exposure in Southeast Asia. However, analysis suggested the isolate originated in Central or South America.


Plasmodium falciparum kelch 13 Mutations, 9 Countries in Africa, 2014-2018.

  • Sarah E Schmedes‎ et al.
  • Emerging infectious diseases‎
  • 2021‎

The spread of drug resistance to antimalarial treatments poses a serious public health risk globally. To combat this risk, molecular surveillance of drug resistance is imperative. We report the prevalence of mutations in the Plasmodium falciparum kelch 13 propeller domain associated with partial artemisinin resistance, which we determined by using Sanger sequencing samples from patients enrolled in therapeutic efficacy studies from 9 sub-Saharan countries during 2014-2018. Of the 2,865 samples successfully sequenced before treatment (day of enrollment) and on the day of treatment failure, 29 (1.0%) samples contained 11 unique nonsynonymous mutations and 83 (2.9%) samples contained 27 unique synonymous mutations. Two samples from Kenya contained the S522C mutation, which has been associated with delayed parasite clearance; however, no samples contained validated or candidate artemisinin-resistance mutations.


Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines.

  • Li Wang‎ et al.
  • Nature communications‎
  • 2022‎

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic.


Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments.

  • Denise M Akob‎ et al.
  • Frontiers in microbiology‎
  • 2012‎

Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.


Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax.

  • Eldin Talundzic‎ et al.
  • PloS one‎
  • 2015‎

Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.


Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign.

  • Eldin Talundzic‎ et al.
  • PLoS pathogens‎
  • 2015‎

The recent emergence of artemisinin resistance in the Greater Mekong Subregion poses a major threat to the global effort to control malaria. Tracking the spread and evolution of artemisinin-resistant parasites is critical in aiding efforts to contain the spread of resistance. A total of 417 patient samples from the year 2007, collected during malaria surveillance studies across ten provinces in Thailand, were genotyped for the candidate Plasmodium falciparum molecular marker of artemisinin resistance K13. Parasite genotypes were examined for K13 propeller mutations associated with artemisinin resistance, signatures of positive selection, and for evidence of whether artemisinin-resistant alleles arose independently across Thailand. A total of seven K13 mutant alleles were found (N458Y, R539T, E556D, P574L, R575K, C580Y, S621F). Notably, the R575K and S621F mutations have previously not been reported in Thailand. The most prevalent artemisinin resistance-associated K13 mutation, C580Y, carried two distinct haplotype profiles that were separated based on geography, along the Thai-Cambodia and Thai-Myanmar borders. It appears these two haplotypes may have independent evolutionary origins. In summary, parasites with K13 propeller mutations associated with artemisinin resistance were widely present along the Thai-Cambodia and Thai-Myanmar borders prior to the implementation of the artemisinin resistance containment project in the region.


Universal Human Papillomavirus Typing Assay: Whole-Genome Sequencing following Target Enrichment.

  • Tengguo Li‎ et al.
  • Journal of clinical microbiology‎
  • 2017‎

We designed a universal human papillomavirus (HPV) typing assay based on target enrichment and whole-genome sequencing (eWGS). The RNA bait included 23,941 probes targeting 191 HPV types and 12 probes targeting beta-globin as a control. We used the Agilent SureSelect XT2 protocol for library preparation, Illumina HiSeq 2500 for sequencing, and CLC Genomics Workbench for sequence analysis. Mapping stringency for type assignment was determined based on 8 (6 HPV-positive and 2 HPV-negative) control samples. Using the optimal mapping conditions, types were assigned to 24 blinded samples. eWGS results were 100% concordant with Linear Array (LA) genotyping results for 9 plasmid samples and fully or partially concordant for 9 of the 15 cervical-vaginal samples, with 95.83% overall type-specific concordance for LA genotyping. eWGS identified 7 HPV types not included in the LA genotyping. Since this method does not involve degenerate primers targeting HPV genomic regions, PCR bias in genotype detection is minimized. With further refinements aimed at reducing cost and increasing throughput, this first application of eWGS for universal HPV typing could be a useful method to elucidate HPV epidemiology.


Development of a workflow for identification of nuclear genotyping markers for Cyclospora cayetanensis.

  • Katelyn A Houghton‎ et al.
  • Parasite (Paris, France)‎
  • 2020‎

Cyclospora cayetanensis is an intestinal parasite responsible for the diarrheal illness, cyclosporiasis. Molecular genotyping, using targeted amplicon sequencing, provides a complementary tool for outbreak investigations, especially when epidemiological data are insufficient for linking cases and identifying clusters. The goal of this study was to identify candidate genotyping markers using a novel workflow for detection of segregating single nucleotide polymorphisms (SNPs) in C. cayetanensis genomes. Four whole C. cayetanensis genomes were compared using this workflow and four candidate markers were selected for evaluation of their genotyping utility by PCR and Sanger sequencing. These four markers covered 13 SNPs and resolved parasites from 57 stool specimens, differentiating C. cayetanensis into 19 new unique genotypes.


Efficacy of artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola, 2015.

  • Mateusz M Plucinski‎ et al.
  • Malaria journal‎
  • 2017‎

Recent anti-malarial resistance monitoring in Angola has shown efficacy of artemether-lumefantrine (AL) in certain sites approaching the key 90% lower limit of efficacy recommended for artemisinin-based combination therapy. In addition, a controversial case of malaria unresponsive to artemisinins was reported in a patient infected in Lunda Sul Province in 2013.


Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors.

  • Nsa Dada‎ et al.
  • Scientific reports‎
  • 2018‎

In light of the declining global malaria burden attained largely due to insecticides, a deeper understanding of the factors driving insecticide resistance is needed to mitigate its growing threat to malaria vector control programs. Following evidence of microbiota-mediated insecticide resistance in agricultural pests, we undertook a comparative study of the microbiota in mosquitoes of differing insecticide resistance status. The microbiota of wild-caught Anopheles albimanus, an important Latin American malaria vector, that were resistant (FEN_Res) or susceptible (FEN_Sus) to the organophosphate (OP) insecticide fenitrothion were characterized and compared using whole metagenome sequencing. Results showed differing composition of the microbiota and its functions between FEN_Res and FEN_Sus, with significant enrichment of OP-degrading bacteria and enzymes in FEN_Res compared to FEN_Sus. Lower bacterial diversity was observed in FEN_Res compared to FEN_Sus, suggesting the enrichment of bacterial taxa with a competitive advantage in response to insecticide selection pressure. We report and characterize for the first time whole metagenomes of An. albimanus, revealing associations between the microbiota and phenotypic resistance to the insecticide fenitrothion. This study lays the groundwork for further investigation of the role of the mosquito microbiota in insecticide resistance.


Using the Plasmodium mitochondrial genome for classifying mixed-species infections and inferring the geographical origin of P. falciparum parasites imported to the U.S.

  • Sarah E Schmedes‎ et al.
  • PloS one‎
  • 2019‎

The ability to identify mixed-species infections and track the origin of Plasmodium parasites can further enhance the development of treatment and prevention recommendations as well as outbreak investigations. Here, we explore the utility of using the full Plasmodium mitochondrial genome to classify Plasmodium species, detect mixed infections, and infer the geographical origin of imported P. falciparum parasites to the United States (U.S.). Using the recently developed standardized, high-throughput Malaria Resistance Surveillance (MaRS) protocol, the full Plasmodium mitochondrial genomes of 265 malaria cases imported to the U.S. from 2014-2017 were sequenced and analyzed. P. falciparum infections were found in 94.7% (251/265) of samples. Five percent (14/265) of samples were identified as mixed- Plasmodium species or non-P. falciparum, including P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. P. falciparum mitochondrial haplotypes analysis revealed greater than eighteen percent of samples to have at least two P. falciparum mitochondrial genome haplotypes, indicating either heteroplasmy or multi-clonal infections. Maximum-likelihood phylogenies of 912 P. falciparum mitochondrial genomes with known country origin were used to infer the geographical origin of thirteen samples from persons with unknown travel histories as: Africa (country unspecified) (n = 10), Ghana (n = 1), Southeast Asia (n = 1), and the Philippines (n = 1). We demonstrate the utility and current limitations of using the Plasmodium mitochondrial genome to classify samples with mixed-infections and infer the geographical origin of imported P. falciparum malaria cases to the U.S. with unknown travel history.


Conserved Patterns of Symmetric Inversion in the Genome Evolution of Bordetella Respiratory Pathogens.

  • Michael R Weigand‎ et al.
  • mSystems‎
  • 2019‎

Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species.


Efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated malaria and prevalence of Pfk13 and Pfmdr1 polymorphisms after a decade of using artemisinin-based combination therapy in mainland Tanzania.

  • Deus S Ishengoma‎ et al.
  • Malaria journal‎
  • 2019‎

The World Health Organization recommends regular therapeutic efficacy studies (TES) to monitor the performance of first and second-line anti-malarials. In 2016, efficacy and safety of artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria were assessed through a TES conducted between April and October 2016 at four sentinel sites of Kibaha, Mkuzi, Mlimba, and Ujiji in Tanzania. The study also assessed molecular markers of artemisinin and lumefantrine (partner drug) resistance.


Understanding the Emergence of Multidrug-Resistant Candida: Using Whole-Genome Sequencing to Describe the Population Structure of Candida haemulonii Species Complex.

  • Lalitha Gade‎ et al.
  • Frontiers in genetics‎
  • 2020‎

The recent emergence of a multidrug-resistant yeast, Candida auris, has drawn attention to the closely related species from the Candida haemulonii complex that include C. haemulonii, Candida duobushaemulonii, Candida pseudohaemulonii, and the recently identified Candida vulturna. Here, we used antifungal susceptibility testing and whole-genome sequencing (WGS) to investigate drug resistance and genetic diversity among isolates of C. haemulonii complex from different geographic areas in order to assess population structure and the extent of clonality among strains. Although most isolates of all four species were genetically distinct, we detected evidence of the in-hospital transmission of C. haemulonii and C. duobushaemulonii in one hospital in Panama, indicating that these species are also capable of causing outbreaks in healthcare settings. We also detected evidence of the rising azole resistance among isolates of C. haemulonii and C. duobushaemulonii in Colombia, Panama, and Venezuela linked to substitutions in ERG11 gene as well as amplification of this gene in C. haemulonii in isolates in Colombia suggesting the presence of evolutionary pressure for developing azole resistance in this region. Our results demonstrate that these species need to be monitored as possible causes of outbreaks of invasive infection.


Genotyping genetically heterogeneous Cyclospora cayetanensis infections to complement epidemiological case linkage.

  • Joel L N Barratt‎ et al.
  • Parasitology‎
  • 2019‎

Sexually reproducing pathogens such as Cyclospora cayetanensis often produce genetically heterogeneous infections where the number of unique sequence types detected at any given locus varies depending on which locus is sequenced. The genotypes assigned to these infections quickly become complex when additional loci are analysed. This genetic heterogeneity confounds the utility of traditional sequence-typing and phylogenetic approaches for aiding epidemiological trace-back, and requires new methods to address this complexity. Here, we describe an ensemble of two similarity-based classification algorithms, including a Bayesian and heuristic component that infer the relatedness of C. cayetanensis infections. The ensemble requires a set of haplotypes as input and assigns arbitrary distances to specimen pairs reflecting their most likely relationships. The approach was applied to data generated from a test cohort of 88 human fecal specimens containing C. cayetanensis, including 30 from patients whose infections were associated with epidemiologically defined outbreak clusters of cyclosporiasis. The ensemble assigned specimens to plausible clusters of genetically related infections despite their complex haplotype composition. These relationships were corroborated by a significant number of epidemiological linkages (P < 0.0001) suggesting the ensemble's utility for aiding epidemiological trace-back investigations of cyclosporiasis.


Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus.

  • Nsa Dada‎ et al.
  • The ISME journal‎
  • 2019‎

A deeper understanding of the mechanisms underlying insecticide resistance is needed to mitigate its threat to malaria vector control. Following previously identified associations between mosquito microbiota and insecticide resistance, we demonstrate for the first time, the effects of pyrethroid exposure on the microbiota of F1 progeny of field-collected Anopheles albimanus. Larval and adult mosquitoes were exposed to the pyrethroids alphacypermethrin (only adults), permethrin, and deltamethrin. While there were no significant differences in bacterial composition between insecticide-resistant and insecticide-susceptible mosquitoes, bacterial composition between insecticide-exposed and non-exposed mosquitoes was significantly different for alphacypermethrin and permethrin exposure. Along with other bacterial taxa not identified to species, Pantoea agglomerans (a known insecticide-degrading bacterial species) and Pseudomonas fragi were more abundant in insecticide-exposed compared to non-exposed adults, demonstrating that insecticide exposure can alter mosquito bacterial communities. We also show for the first time that the cuticle surfaces of both larval and adult An. albimanus harbor more diverse bacterial communities than their internal microbial niches. Together, these findings demonstrate how insecticide pressure could be selecting for certain bacteria within mosquitoes, especially insecticide-metabolizing bacteria, thus potentially contributing to insecticide resistance.


Therapeutic efficacy of artemether-lumefantrine and artesunate-amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Mali, 2015-2016.

  • Youssouf Diarra‎ et al.
  • Malaria journal‎
  • 2021‎

The current first-line treatments for uncomplicated malaria recommended by the National Malaria Control Programme in Mali are artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ). From 2015 to 2016, an in vivo study was carried out to assess the clinical and parasitological responses to AL and ASAQ in Sélingué, Mali.


Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

  • Katherine E Bowden‎ et al.
  • mSphere‎
  • 2016‎

During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.


The Establishment and Diversification of Epidemic-Associated Serogroup W Meningococcus in the African Meningitis Belt, 1994 to 2012.

  • Adam C Retchless‎ et al.
  • mSphere‎
  • 2016‎

Epidemics of invasive meningococcal disease (IMD) caused by meningococcal serogroup A have been eliminated from the sub-Saharan African so-called "meningitis belt" by the meningococcal A conjugate vaccine (MACV), and yet, other serogroups continue to cause epidemics. Neisseria meningitidis serogroup W remains a major cause of disease in the region, with most isolates belonging to clonal complex 11 (CC11). Here, the genetic variation within and between epidemic-associated strains was assessed by sequencing the genomes of 92 N. meningitidis serogroup W isolates collected between 1994 and 2012 from both sporadic and epidemic IMD cases, 85 being from selected meningitis belt countries. The sequenced isolates belonged to either CC175 (n = 9) or CC11 (n = 83). The CC11 N. meningitidis serogroup W isolates belonged to a single lineage comprising four major phylogenetic subclades. Separate CC11 N. meningitidis serogroup W subclades were associated with the 2002 and 2012 Burkina Faso epidemics. The subclade associated with the 2012 epidemic included isolates found in Burkina Faso and Mali during 2011 and 2012, which descended from a strain very similar to the Hajj (Islamic pilgrimage to Mecca)-related Saudi Arabian outbreak strain from 2000. The phylogeny of isolates from 2012 reflected their geographic origin within Burkina Faso, with isolates from the Malian border region being closely related to the isolates from Mali. Evidence of ongoing evolution, international transmission, and strain replacement stresses the importance of maintaining N. meningitidis surveillance in Africa following the MACV implementation. IMPORTANCE Meningococcal disease (meningitis and bloodstream infections) threatens millions of people across the meningitis belt of sub-Saharan Africa. A vaccine introduced in 2010 protects against Africa's then-most common cause of meningococcal disease, N. meningitidis serogroup A. However, other serogroups continue to cause epidemics in the region-including serogroup W. The rapid identification of strains that have been associated with prior outbreaks can improve the assessment of outbreak risk and enable timely preparation of public health responses, including vaccination. Phylogenetic analysis of newly sequenced serogroup W strains isolated from 1994 to 2012 identified two groups of strains linked to large epidemics in Burkina Faso, one being descended from a strain that caused an outbreak during the Hajj pilgrimage in 2000. We find that applying whole-genome sequencing to meningococcal disease surveillance collections improves the discrimination among strains, even within a single nation-wide epidemic, which can be used to better understand pathogen spread.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: