Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Endothelial RSPO3 Controls Vascular Stability and Pruning through Non-canonical WNT/Ca(2+)/NFAT Signaling.

  • Beate Scholz‎ et al.
  • Developmental cell‎
  • 2016‎

The WNT signaling enhancer R-spondin3 (RSPO3) is prominently expressed in the vasculature. Correspondingly, embryonic lethality of Rspo3-deficient mice is caused by vessel remodeling defects. Yet the mechanisms underlying vascular RSPO3 function remain elusive. Inducible endothelial Rspo3 deletion (Rspo3-iECKO) resulted in perturbed developmental and tumor vascular remodeling. Endothelial cell apoptosis and vascular pruning led to reduced microvessel density in Rspo3-iECKO mice. Rspo3-iECKO mice strikingly phenocopied the non-canonical WNT signaling-induced vascular defects of mice deleted for the WNT secretion factor Evi/Wls. An endothelial screen for RSPO3 and EVI/WLS co-regulated genes identified Rnf213, Usp18, and Trim30α. RNF213 targets filamin A and NFAT1 for proteasomal degradation attenuating non-canonical WNT/Ca(2+) signaling. Likewise, USP18 and TRIM5α inhibited NFAT1 activation. Consequently, NFAT protein levels were decreased in endothelial cells of Rspo3-iECKO mice and pharmacological NFAT inhibition phenocopied Rspo3-iECKO mice. The data identify endothelial RSPO3-driven non-canonical WNT/Ca(2+)/NFAT signaling as a critical maintenance pathway of the remodeling vasculature.


Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin.

  • Carolin Mogler‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

Hepatocellular carcinoma (HCC) is among the most common and deadliest cancers worldwide. A major contributor to HCC progression is the cross talk between tumor cells and the surrounding stroma including activated hepatic stellate cells (HSC). Activation of HSC during liver damage leads to upregulation of the orphan receptor endosialin (CD248), which contributes to regulating the balance of liver regeneration and fibrosis. Based on the established role of endosialin in regulating HSC/hepatocyte cross talk, we hypothesized that HSC-expressed endosialin might similarly affect cell proliferation during hepatocarcinogenesis. Indeed, the histological analysis of human HCC samples revealed an inverse correlation between tumor cell proliferation and stromal endosialin expression. Correspondingly, global genetic inactivation of endosialin resulted in accelerated tumor growth in an inducible mouse HCC model. A candidate-based screen of tumor lysates and differential protein arrays of cultured HSC identified several established hepatotropic cytokines, including IGF2, RBP4, DKK1, and CCL5 as being negatively regulated by endosialin. Taken together, the experiments identify endosialin-expressing HSC as a negative regulator of HCC progression.


Neutralization of CD95 ligand protects the liver against ischemia-reperfusion injury and prevents acute liver failure.

  • Mohammed Al-Saeedi‎ et al.
  • Cell death & disease‎
  • 2018‎

Ischemia-reperfusion injury is a common pathological process in liver surgery and transplantation, and has considerable impact on the patient outcome and survival. Death receptors are important mediators of ischemia-reperfusion injury, notably the signaling pathways of the death receptor CD95 (Apo-1/Fas) and its corresponding ligand CD95L. This study investigates, for the first time, whether the inhibition of CD95L protects the liver against ischemia-reperfusion injury. Warm ischemia was induced in the median and left liver lobes of C57BL/6 mice for 45 min. CD95Fc, a specific inhibitor of CD95L, was applied prior to ischemia. Hepatic injury was assessed via consecutive measurements of liver serum enzymes, histopathological assessment of apoptosis and necrosis and caspase assays at 3, 6, 12, 18 and 24 h after reperfusion. Serum levels of liver enzymes, as well as characteristic histopathological changes and caspase assays indicated pronounced features of apoptotic and necrotic liver damage 12 and 24 h after ischemia-reperfusion injury. Animals treated with the CD95L-blocker CD95Fc, exhibited a significant reduction in the level of serum liver enzymes and showed both decreased histopathological signs of parenchymal damage and decreased caspase activation. This study demonstrates that inhibition of CD95L with the CD95L-blocker CD95Fc, is effective in protecting mice from liver failure due to ischemia-reperfusion injury of the liver. CD95Fc could therefore emerge as a new pharmacological therapy for liver resection, transplantation surgery and acute liver failure.


Epidermal growth factor receptor variant III in head and neck squamous cell carcinoma is not relevant for targeted therapy and irradiation.

  • Dominik Thomas Koch‎ et al.
  • Oncotarget‎
  • 2017‎

The epidermal growth factor receptor (EGFR) is an important regulator of cell growth and survival, and is highly variable in tumor cells. The most prevalent variation of the EGFR extracellular domain is the EGFR variant III (EGFRvIII). Some studies imply that EGFRvIII may be responsible for the poor response to the monoclonal EGFR-antibody Cetuximab, used therapeutically in head and neck squamous cell carcinoma (HNSCC). Due to inconsistent data in the literature regarding EGFRvIII prevalence and clinical relevance in HNSCC, especially its predictive value, we examined EGFRvIII-transfected cell lines and patient tissue samples.


High rate of complete histopathological response in hepatocellular carcinoma patients after combined transarterial chemoembolization and stereotactic body radiation therapy.

  • Ulrike Bauer‎ et al.
  • World journal of gastroenterology‎
  • 2021‎

Liver transplantation (LT) presents a curative treatment option in patients with early stage hepatocellular carcinoma (HCC) who are not eligible for resection or ablation therapy. Due to a risk of up 30% for waitlist drop-out upon tumor progression, bridging therapies are used to halt tumor growth. Transarterial chemoembolization (TACE) and less commonly stereotactic body radiation therapy (SBRT) or a combination of TACE and SBRT, are used as bridging therapies in LT. However, it remains unclear if one of those treatment options is superior. The analysis of explant livers after transplantation provides the unique opportunity to investigate treatment response by histopathology.


Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors.

  • Claudio E von Schacky‎ et al.
  • European radiology‎
  • 2022‎

To develop and validate machine learning models to distinguish between benign and malignant bone lesions and compare the performance to radiologists.


Tie2 Receptor in Tumor-Infiltrating Macrophages Is Dispensable for Tumor Angiogenesis and Tumor Relapse after Chemotherapy.

  • Moritz Jakab‎ et al.
  • Cancer research‎
  • 2022‎

Tumor relapse after chemotherapy relies on the reconstruction of damaged tumor vasculature. In this context, proangiogenic Tie2-expressing macrophages have been suggested to serve as crucial instructors of tumor revascularization by secreting angiogenic factors while being closely associated with the vessel wall. Although the proangiogenic nature of Tie2+ macrophages is well described, the functional contribution of macrophage Tie2 expression remains elusive. Here, we employed a Cre-loxP system to specifically delete Tie2 in macrophages. In multiple syngeneic solid tumor models and two distinct chemotherapeutic treatment regimens, macrophage-expressed Tie2 did not contribute to primary tumor growth, tumor revascularization after chemotherapy, tumor recurrence, or metastasis. Exposing cultured murine macrophage cell lines and bone marrow-derived macrophages to hypoxia or stimulating them with Ang2 did not induce expression of Tie2 at the RNA or protein level. Furthermore, a comprehensive meta-analysis of publicly available single cell RNA sequencing datasets of human and murine tumor-infiltrating CD11b+ myeloid cells did not reveal a transcriptionally distinct macrophage population marked by the expression of Tie2. Collectively, these data question the previously reported critical role of Tie2-expressing macrophages for tumor angiogenesis and tumor relapse after chemotherapy. Moreover, lack of Tie2 inducibility and absence of Tie2-positive macrophages in multiple recently published tumor studies refute a possible prognostic value of macrophage-expressed Tie2.


Increased liver carcinogenesis and enrichment of stem cell properties in livers of Dickkopf 2 (Dkk2) deleted mice.

  • Thorsten Maass‎ et al.
  • Oncotarget‎
  • 2016‎

Dkk2 a antagonist of the Wnt/β-catenin-signaling pathway was shown to be silenced in diverse cancers. More recent data indicate that Dkk family members may also possess functions independent of Wnt-signaling during carcinogenesis. The detailed biological function of Dkks and its relevance for liver cancer is unknown. We analyzed the effects of a genetic deletion of Dkk2 (Dkk2-/-) in a hepatocarcinogenesis model using DEN/Phenobarbital. Untreated Dkk2-/- animals, showed considerable atypia with variation of hepatocyte size and chromatin density. In livers of Dkk2-/- mice nodule formation was seen at 9 months of age with focal loss of trabecular architecture and atypical hepatocytes and after DEN induction Dkk2-/- mice developed significantly more liver tumors compared to controls. Whole transcriptome analysis of untreated Dkk2-/- liver tissue revealed a Dkk2-dependent genetic network involving Wnt/β-Catenin but also multiple additional oncogenic factors, such as e.g. Pdgf-b, Gdf-15 and Hnf4a. Dkk2-/- tumor cells showed a significant deregulation of stemness genes associated with enhanced colony forming properties. Integration of the Dkk2-/- signature into human data was strongly associated with patients survival. Dkk2 deletion results in alterations of liver morphology leading to an increased frequency of liver cancer. The associated genetic changes included factors not primarily related to Wnt/β-Catenin-signaling and correlated with the clinical outcome of HCC-patients.


SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis.

  • Tobias Boettler‎ et al.
  • Journal of hepatology‎
  • 2022‎

Autoimmune hepatitis episodes have been described following SARS-CoV-2 infection and vaccination but their pathophysiology remains unclear. Herein, we report the case of a 52-year-old male, presenting with bimodal episodes of acute hepatitis, each occurring 2-3 weeks after BNT162b2 mRNA vaccination. We sought to identify the underlying immune correlates. The patient received oral budesonide, relapsed, but achieved remission under systemic steroids.


Liver sinusoidal endothelial cells orchestrate NK cell recruitment and activation in acute inflammatory liver injury.

  • Sophia Papaioannou‎ et al.
  • Cell reports‎
  • 2023‎

Liver sinusoidal endothelial cells (LSECs) rapidly clear lipopolysaccharide (LPS) from the bloodstream and establish intimate contact with immune cells. However, their role in regulating liver inflammation remains poorly understood. We show that LSECs modify their chemokine expression profile driven by LPS or interferon-γ (IFN-γ), resulting in the production of the myeloid- or lymphoid-attracting chemokines CCL2 and CXCL10, respectively, which accumulate in the serum of LPS-challenged animals. Natural killer (NK) cell exposure to LSECs in vitro primes NK cells for higher production of IFN-γ in response to interleukin-12 (IL-12) and IL-18. In livers of LPS-injected mice, NK cells are the major producers of this cytokine. In turn, LSECs require exposure to IFN-γ for CXCL10 expression, and endothelial-specific Cxcl10 gene deletion curtails NK cell accumulation in the inflamed livers. Thus, LSECs respond to both LPS and immune-derived signals and fuel a positive feedback loop of immune cell attraction and activation in the inflamed liver tissue.


Hepatocellular Brg1 promotes CCl4-induced liver inflammation, ECM accumulation and fibrosis in mice.

  • Baocai Wang‎ et al.
  • PloS one‎
  • 2023‎

Hepatic fibrosis is a progressive pathological process involving the exhaustion of hepatocellular regenerative capacity and ultimately leading to the development of cirrhosis and even hepatocellular carcinoma. Brg1, the core subunit of the SWI/SNF chromatin-remodeling complex, was recently identified as important for liver regeneration. This study investigates the role of Brg1 in hepatic fibrosis development.


Immunologic landscape of human hepatic hemangiomas and epithelioid hemangioendotheliomas.

  • Stefan Thomann‎ et al.
  • Hepatology communications‎
  • 2024‎

The missing requirement for resection for the majority of hepatic hemangiomas (HH) and tissue scarcity for rare diseases such as hepatic epithelioid hemangioendotheliomas (HEHE) complicate the characterization of the spatial immunovascular niche of these benign and malignant vascular neoplastic diseases.


Brg1 promotes liver regeneration after partial hepatectomy via regulation of cell cycle.

  • Baocai Wang‎ et al.
  • Scientific reports‎
  • 2019‎

Brahma-related gene 1 (Brg1), a catalytic subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, is known to be involved in proliferative cell processes. Liver regeneration is initiated spontaneously after injury and leads to a strong proliferative response. In this study, a hepatocyte-specific Brg1 gene knockout mouse model was used to analyse the role of Brg1 in liver regeneration by performing a 70% partial hepatectomy (PH). After PH, Brg1 was significantly upregulated in wildtype mice. Mice with hepatocyte-specific Brg1 gene knockout showed a significantly lower liver to body weight ratio 48 h post-PH concomitant with a lower hepatocellular proliferation rate compared to wildtype mice. RNA sequencing demonstrated that Brg1 controlled hepatocyte proliferation through the regulation of the p53 pathway and several cell cycle genes. The data of this study reveal a crucial role of Brg1 for liver regeneration by promoting hepatocellular proliferation through modulation of cell cycle genes and, thus, identify Brg1 as potential target for therapeutic approaches.


Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer.

  • Christoph Kahlert‎ et al.
  • BMC cancer‎
  • 2011‎

Aldehyde dehydrogenase 1 (ALDH1) has been characterised as a cancer stem cell marker in different types of tumours. Additionally, it plays a pivotal role in gene regulation and endows tumour cells with augmented chemoresistance. Recently, ALDH1A1 has been described as a prognostic marker in a pancreatic cancer tissue microarray. The aim of this study was to reevaluate the expression of ALDH1A1 as a prognostic marker on whole-mount tissue sections.


GPR182 is a novel marker for sinusoidal endothelial differentiation with distinct GPCR signaling activity in vitro.

  • Christian David Schmid‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Endothelial cells (EC) along the vascular tree exhibit organ-specific angiodiversity. Compared to most other ECs, liver sinusoidal endothelial cells (LSEC) that constitute the organ-specific microvasculature of the liver are morphologically and functionally unique. Previously, we showed that transcription factor Gata4 acts as a master regulator controlling LSEC differentiation. Upon analysis of the molecular signature of LSEC, we identified GPR182 as a potential LSEC-specific orphan G-protein coupled receptor (GPCR). Here, we demonstrate that GPR182 is expressed by LSEC and by EC with sinusoidal differentiation in spleen, lymph node and bone marrow in healthy human tissues. In a tissue microarray analysis of human hepatocellular carcinoma (HCC) samples, endothelial GPR182 expression was significantly reduced in tumor samples compared to peritumoral liver tissue samples (p = 0.0105). Loss of endothelial GPR182 expression was also seen in fibrotic and cirrhotic liver tissues. In vitro, GPR182 differentially regulated canonical GPCR signaling pathways as shown using reporter luciferase assays in HEK293T cells. Whereas ERK and RhoA signaling were inhibited, CREB and Calcium signaling were activated by ectopic GPR182 overexpression. Our data demonstrate that GPR182 is an endothelial subtype-specific marker for human sinusoidal EC of the liver, spleen, lymph node and bone marrow. In addition, we provide evidence for GPR182-dependent downstream signaling via ERK and SRF pathways that may be involved in regulating endothelial subtype-specific sinusoidal differentiation and sinusoidal functions such as permeability.


Oncogenic Akt-FOXO3 loop favors tumor-promoting modes and enhances oxidative damage-associated hepatocellular carcinogenesis.

  • Miao Lu‎ et al.
  • BMC cancer‎
  • 2019‎

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, accounting for 80-90% of cases. Mutations are commonly found in the signaling regulating the PI3K/Akt pathway, leading to oncogenic cell proliferation and survival. Key transcription factors that are negatively regulated downstream of PI3K/Akt are members of the forkhead box O family (FOXO). FOXOs were initially considered as tumor suppressors by inducing cell cycle arrest and apoptosis. However, there is increasing evidence showing that FOXOs, especially FOXO3, can support tumorigenesis.


Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation.

  • Joschka Heil‎ et al.
  • Nature communications‎
  • 2021‎

Within the bone marrow microenvironment, endothelial cells (EC) exert important functions. Arterial EC support hematopoiesis while H-type capillaries induce bone formation. Here, we show that BM sinusoidal EC (BM-SEC) actively control erythropoiesis. Mice with stabilized β-catenin in BM-SEC (Ctnnb1OE-SEC) generated by using a BM-SEC-restricted Cre mouse line (Stab2-iCreF3) develop fatal anemia. While activation of Wnt-signaling in BM-SEC causes an increase in erythroblast subsets (PII-PIV), mature erythroid cells (PV) are reduced indicating impairment of terminal erythroid differentiation/reticulocyte maturation. Transplantation of Ctnnb1OE-SEC hematopoietic stem cells into wildtype recipients confirms lethal anemia to be caused by cell-extrinsic, endothelial-mediated effects. Ctnnb1OE-SEC BM-SEC reveal aberrant sinusoidal differentiation with altered EC gene expression and perisinusoidal ECM deposition and angiocrine dysregulation with de novo endothelial expression of FGF23 and DKK2, elevated in anemia and involved in vascular stabilization, respectively. Our study demonstrates that BM-SEC play an important role in the bone marrow microenvironment in health and disease.


The C1q-ApoE complex: A new hallmark pathology of viral hepatitis and nonalcoholic fatty liver disease.

  • Livia K L Habenicht‎ et al.
  • Frontiers in immunology‎
  • 2022‎

We recently identified a high-affinity C1q-ApoE complex in human artery atherosclerotic intima lesions and in human amyloid plaques of Alzheimer's Disease brains defining a common pathogenetic pathway of two diverse diseases, i.e. atherosclerosis and dementia. C1q is the initiating and controlling protein of the classical complement cascade (CCC), which occupies a key role in multiple acute and chronic inflammatory tissue responses. C1q is largely produced by myeloid cells including Kupffer cells (KCs) and subsequently secreted into the circulation as an inactive preprotein. Its binding partner, Apolipoprotein E (ApoE), is produced by KCs and hepatocytes and it is also secreted into the circulation, where it regulates essential steps of lipid transport. In addition to its major source, ApoE can be produced by non-liver cells including immune cells and multiple other cells depending on local tissue contexts. To initiate the CCC cascade, C1q must be activated by molecules as varied as oxidized lipids, amyloid fibrils, and immune complexes. However, ApoE is mute towards inactive C1q but binds at high-affinity to its activated form. Specifically, our studies revealed that ApoE is a CCC-specific checkpoint inhibitor via the formation of the C1q-ApoE complex. We proposed that it may arise in multiple if not all CCC-associated diseases and that its presence indicates ongoing CCC activity. Here, we turned to the liver to examine C1q-ApoE complexes in human B- and C-viral hepatitis and nonalcoholic fatty liver disease (NAFLD). In addition, we used multidrug-resistance-2 gene-knockout (Mdr2-KO) mice as a model for inflammatory liver disease and hepatocellular carcinoma (HCC) pathogenesis. In normal murine and human livers, KCs were the major C1q-producing cell type while hepatocytes were the primary ApoE-forming cell type though the C1q-ApoE complex was rare or nonexistent. However, significant numbers of C1q-ApoE complexes formed in both Mdr2-KO, human viral hepatitis, and NAFLD around portal triads where immune cells had infiltrated the liver. Additionally, high numbers of C1q-ApoE complexes emerged in human livers in areas of extracellular lipid droplets across the entire liver parenchyma in NAFLD-affected patients. Thus, the C1q-ApoE complex is a new pathological hallmark of viral hepatitis B and C and NAFLD.


Ticagrelor promotes atherosclerotic plaque stability in a mouse model of advanced atherosclerosis.

  • Michael R Preusch‎ et al.
  • Drug design, development and therapy‎
  • 2016‎

There is increasing evidence supporting the role of platelets in atherosclerotic vascular disease. The G-protein-coupled receptor P2Y12 is a central mediator of platelet activation and aggregation but has also been linked to platelet-independent vascular disease. Ticagrelor is an oral P2Y12 antagonist that is used as a standard treatment in patients after acute myocardial infarction. However, the effects of ticagrelor on advanced atherosclerosis have not been investigated.


Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.

  • Carolin Mogler‎ et al.
  • EMBO molecular medicine‎
  • 2015‎

Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (EN(KO)) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in EN(KO) mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: