Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Notch signaling drives development of Barrett's metaplasia from Dclk1-positive epithelial tuft cells in the murine gastric mucosa.

  • Bettina Kunze‎ et al.
  • Scientific reports‎
  • 2021‎

Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC), but its cellular origin and mechanism of neoplastic progression remain unresolved. Notch signaling, which plays a key role in regulating intestinal stem cell maintenance, has been implicated in a number of cancers. The kinase Dclk1 labels epithelial post-mitotic tuft cells at the squamo-columnar junction (SCJ), and has also been proposed to contribute to epithelial tumor growth. Here, we find that genetic activation of intracellular Notch signaling in epithelial Dclk1-positive tuft cells resulted in the accelerated development of metaplasia and dysplasia in a mouse model of BE (pL2.Dclk1.N2IC mice). In contrast, genetic ablation of Notch receptor 2 in Dclk1-positive cells delayed BE progression (pL2.Dclk1.N2fl mice), and led to increased secretory cell differentiation. The accelerated BE progression in pL2.Dclk1.N2IC mice correlated with changes to the transcriptomic landscape, most notably for the activation of oncogenic, proliferative pathways in BE tissues, in contrast to upregulated Wnt signalling in pL2.Dclk1.N2fl mice. Collectively, our data show that Notch activation in Dclk1-positive tuft cells in the gastric cardia can contribute to BE development.


Fractal analysis of extracellular matrix for observer-independent quantification of intestinal fibrosis in Crohn's disease.

  • Marie-Christin Weber‎ et al.
  • Scientific reports‎
  • 2024‎

Prevention of intestinal fibrosis remains an unresolved problem in the treatment of Crohn's disease (CD), as specific antifibrotic therapies are not yet available. Appropriate analysis of fibrosis severity is essential for assessing the therapeutic efficacy of potential antifibrotic drugs. The aim of this study was to develop an observer-independent method to quantify intestinal fibrosis in surgical specimens from patients with CD using structural analysis of the extracellular matrix (ECM). We performed fractal analysis in fibrotic and control histological sections of patients with surgery for CD (n = 28). To specifically assess the structure of the collagen matrix, polarized light microscopy was used. A score to quantify collagen fiber alignment and the color of the polarized light was established. Fractal dimension as a measure for the structural complexity correlated significantly with the histological fibrosis score whereas lacunarity as a measure for the compactness of the ECM showed a negative correlation. Polarized light microscopy to visualize the collagen network underlined the structural changes in the ECM network in advanced fibrosis. In conclusion, observer-independent quantification of the structural complexity of the ECM by fractal analysis is a suitable method to quantify the degree of intestinal fibrosis in histological samples from patients with CD.


Synergy of therapeutic heterologous prime-boost hepatitis B vaccination with CpG-application to improve immune control of persistent HBV infection.

  • Anna D Kosinska‎ et al.
  • Scientific reports‎
  • 2019‎

Therapeutic vaccination against chronic hepatitis B must overcome high viral antigen load and local regulatory mechanisms that promote immune-tolerance in the liver and curtail hepatitis B virus (HBV)-specific CD8 T cell immunity. Here, we report that therapeutic heterologous HBcore-protein-prime/Modified-Vaccinia-Virus-Ankara (MVA-HBcore) boost vaccination followed by CpG-application augmented vaccine-induced HBcAg-specific CD8 T cell-function in the liver. In HBV-transgenic as well as AAV-HBV-transduced mice with persistent high-level HBV-replication, the combination of therapeutic vaccination with subsequent CpG-application was synergistic to generate more potent HBV-specific CD8 T cell immunity that improved control of hepatocytes replicating HBV.


Helicobacter pylori γ-glutamyl transferase contributes to colonization and differential recruitment of T cells during persistence.

  • Stefanie Wüstner‎ et al.
  • Scientific reports‎
  • 2017‎

Helicobacter pylori γ-glutamyl transferase (gGT) is a key bacterial virulence factor that is not only important for bacterial gastric colonization but also related to the development of gastric pathology. Despite accumulating evidence for pathogenic and immunologic functions of H. pylori gGT, it is still unclear how it supports gastric colonization and how its specific effects on the host's innate and adaptive immune responses contribute to colonization and pathology. We have compared mice showing similar bacterial load after infection with gGT-proficient or gGT-deficient H. pylori to analyse the specific role of the enzyme during infection. Our data indicate that H. pylori gGT supports initial colonization. Nevertheless, bacteria lacking gGT can still colonize and persist. We observed that the presence of gGT during infection favoured a proinflammatory innate and adaptive immune response. Notably, H. pylori gGT activity was linked to increased levels of IFNγ, which were attributed to a differential recruitment of CD8+ T cells to the stomach. Our data support an essential role for H. pylori gGT in gastric colonization and further suggest that gGT favours infiltration of CD8+ cells to the gastric mucosa, which might play an important and yet overlooked role in the pathogenesis of H. pylori.


Mir34a constrains pancreatic carcinogenesis.

  • Ana Hidalgo-Sastre‎ et al.
  • Scientific reports‎
  • 2020‎

Several studies have shown that over 70 different microRNAs are aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC), affecting proliferation, apoptosis, metabolism, EMT and metastasis. The most important genetic alterations driving PDAC are a constitutive active mutation of the oncogene Kras and loss of function of the tumour suppressor Tp53 gene. Since the MicroRNA 34a (Mir34a) is a direct target of Tp53 it may critically contribute to the suppression of PDAC. Mir34a is epigenetically silenced in numerous cancers, including PDAC, where Mir34a down-regulation has been associated with poor patient prognosis. To determine whether Mir34a represents a suppressor of PDAC formation we generated an in vivo PDAC-mouse model harbouring pancreas-specific loss of Mir34a (KrasG12D; Mir34aΔ/Δ). Histological analysis of KrasG12D; Mir34aΔ/Δ mice revealed an accelerated formation of pre-neoplastic lesions and a faster PDAC development, compared to KrasG12D controls. Here we show that the accelerated phenotype is driven by an early up-regulation of the pro-inflammatory cytokines TNFA and IL6 in normal acinar cells and accompanied by the recruitment of immune cells. Our results imply that Mir34a restrains PDAC development by modulating the immune microenvironment of PDAC, thus defining Mir34a restauration as a potential therapeutic strategy for inhibition of PDAC development.


Brg1 promotes liver regeneration after partial hepatectomy via regulation of cell cycle.

  • Baocai Wang‎ et al.
  • Scientific reports‎
  • 2019‎

Brahma-related gene 1 (Brg1), a catalytic subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, is known to be involved in proliferative cell processes. Liver regeneration is initiated spontaneously after injury and leads to a strong proliferative response. In this study, a hepatocyte-specific Brg1 gene knockout mouse model was used to analyse the role of Brg1 in liver regeneration by performing a 70% partial hepatectomy (PH). After PH, Brg1 was significantly upregulated in wildtype mice. Mice with hepatocyte-specific Brg1 gene knockout showed a significantly lower liver to body weight ratio 48 h post-PH concomitant with a lower hepatocellular proliferation rate compared to wildtype mice. RNA sequencing demonstrated that Brg1 controlled hepatocyte proliferation through the regulation of the p53 pathway and several cell cycle genes. The data of this study reveal a crucial role of Brg1 for liver regeneration by promoting hepatocellular proliferation through modulation of cell cycle genes and, thus, identify Brg1 as potential target for therapeutic approaches.


Peroxisome Proliferator-Activated Receptor gamma negatively regulates liver regeneration after partial hepatectomy via the HGF/c-Met/ERK1/2 pathways.

  • Zhangjun Cheng‎ et al.
  • Scientific reports‎
  • 2018‎

Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a nuclear receptor demonstrated to play an important role in various biological processes. The aim of this study was to determine the effect of PPARγ on liver regeneration upon partial hepatectomy (PH) in mice. Mice were subjected to two-thirds PH. Before surgery, mice were either treated with the PPARγ agonist rosiglitazone, the PPARγ antagonist GW9662 alone, or with the c-met inhibitor SGX523. Liver-to-body-weight ratio, lab values, and proliferation markers were assessed. Components of the PPARγ-specific signaling pathway were identified by western blot and qRT-PCR. Our results show that liver regeneration is being inhibited by rosiglitazone and accelerated by GW9662. Inhibition of c-Met by SGX523 treatment abrogates GW9662-induced liver regeneration and hepatocyte proliferation. Hepatocyte growth factor (HGF) protein levels were significantly downregulated after rosiglitazone treatment. Activation of HGF/c-Met pathways by phosphorylation of c-Met and ERK1/2 were inhibited in rosiglitazone-treated mice. In turn, blocking phosphorylation of c-Met significantly abrogated the augmented effect of GW9662 on liver regeneration. Our data support the concept that PPARγ abrogates liver growth and hepatocellular proliferation by inhibition of the HGF/c-Met/ERK1/2 pathways. These pathways may represent potential targets in response to liver disease and could impact on the development of molecular therapies.


Cytosolic nucleic acid sensors of the innate immune system promote liver regeneration after partial hepatectomy.

  • Sarah Schulze‎ et al.
  • Scientific reports‎
  • 2018‎

Stimulation of cytosolic nucleic acid sensors of innate immunity by pathogen-derived nucleic acids is important for antimicrobial defence, but stimulation through self-derived nucleic acids may contribute to autoinflammation and cancer. DNA sensing in the cytosol requires the stimulator of interferon genes (STING), while cytosolic RNA sensors use mitochondrial antiviral-signalling protein (MAVS). In a murine model of two-thirds hepatectomy, combined deficiency of MAVS and STING resulted in strongly impaired hepatocyte proliferation and delayed recovery of liver mass. Whereas lack of MAVS and STING did not influence upregulation of the G1-phase cyclins D1 and E1, it substantially reduced the hyperphosphorylation of retinoblastoma protein, attenuated the activation of cyclin-dependent kinase (CDK)-2, delayed upregulation of CDK1 and cyclins A2 and B1, and impaired S-phase entry of hepatocytes. Mechanistically, lack of cytosolic nucleic acid sensors strongly upregulated the anti-proliferative mediators TGF-β2 and activin A, which was associated with an increased expression of the cell cycle inhibitors p15 and p21. Partial hepatectomy was followed by the release of exosomes with abundant nucleic acid cargo, which may provide ligands for the MAVS and STING pathways. Together, these findings identify a previously unrecognised function of cytosolic nucleic acid sensors of innate immunity for promoting liver regeneration.


Hyperpolarized 13C pyruvate magnetic resonance spectroscopy for in vivo metabolic phenotyping of rat HCC.

  • Elisabeth Bliemsrieder‎ et al.
  • Scientific reports‎
  • 2021‎

The in vivo assessment of tissue metabolism represents a novel strategy for the evaluation of oncologic disease. Hepatocellular carcinoma (HCC) is a high-prevalence, high-mortality tumor entity often discovered at a late stage. Recent evidence indicates that survival differences depend on metabolic alterations in tumor tissue, with particular focus on glucose metabolism and lactate production. Here, we present an in vivo imaging technique for metabolic tumor phenotyping in rat models of HCC. Endogenous HCC was induced in Wistar rats by oral diethyl-nitrosamine administration. Peak lactate-to-alanine signal ratios (L/A) were assessed with hyperpolarized magnetic resonance spectroscopic imaging (HPMRSI) after [1-13C]pyruvate injection. Cell lines were derived from a subset of primary tumors, re-implanted in nude rats, and assessed in vivo with dynamic hyperpolarized magnetic resonance spectroscopy (HPMRS) after [1-13C]pyruvate injection and kinetic modelling of pyruvate metabolism, taking into account systemic lactate production and recirculation. For ex vivo validation, enzyme activity and metabolite concentrations were spectroscopically quantified in cell and tumor tissue extracts. Mean peak L/A was higher in endogenous HCC compared to non-tumorous tissue. Dynamic HPMRS revealed higher pyruvate-to-lactate conversion rates (kpl) and lactate signal in subcutaneous tumors derived from high L/A tumor cells, consistent with ex vivo measurements of higher lactate dehydrogenase (LDH) levels in these cells. In conclusion, HPMRS and HPMRSI reveal distinct tumor phenotypes corresponding to differences in glycolytic metabolism in HCC tumor tissue.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: