Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Evolution of mantis shrimps (Stomatopoda, Malacostraca) in the light of new Mesozoic fossils.

  • Joachim T Haug‎ et al.
  • BMC evolutionary biology‎
  • 2010‎

We describe new specimens of Mesozoic mantis shrimps (Stomatopoda, Malacostraca) that exhibit morphological and developmental information previously unknown.


A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts.

  • Joachim T Haug‎ et al.
  • Zoological letters‎
  • 2019‎

Biological diversity is a hot topic in current research, especially its observed decrease in modern times. Investigations of past ecosystems offer additional insights to help better understand the processes underlying biodiversity. The Cretaceous period is of special interest in this context, especially with respect to arthropods. During that period, representatives of many modern lineages appeared for the first time, while representatives of more ancient groups also co-occurred. At the same time, side branches of radiating groups with 'experimental morphologies' emerged that seemed to go extinct shortly afterwards. However, larval forms, with their morphological diversity, are largely neglected in such studies, but may provide important insights into morphological and ecological diversity and its changes in the past.


Untangling the Gordian knot-further resolving the super-species complex of 300-million-year-old xiphosurids by reconstructing their ontogeny.

  • Carolin Haug‎ et al.
  • Development genes and evolution‎
  • 2020‎

The group Xiphosurida (horseshoe "crabs") is today only represented by four species. However, in the fossil record, several dozen species have been described, especially from the Carboniferous (about 300 million years ago). Several species have been interpreted as representatives of Euproops or Belinurus, but there is ongoing discussion which of these species are valid and how they can be differentiated. Recent studies suggested that differences in the timing of individual development could provide information for species distinction, exemplified by studies on Euproops danae (Mazon Creek, USA) and Euproops sp. ("Piesproops"; Piesberg, Germany). For this study, we reinvestigated all Carboniferous xiphosurids from the British Coal Measures stored in the collections of the Natural History Museum London. Size comparisons of the specimens revealed nine size groups; the smaller specimens were originally labelled as Belinurus, the larger ones as Euproops. The nine size groups exhibit five different morphotypes differing in structures surrounding the posterior shield (= thoracetron): spines of different lengths and, in larger specimens, a more or less developed flange. Two of these morphotypes show significantly longer spines than the remaining specimens and could be conspecific as E. anthrax. The remaining specimens are interpreted as growth series of another species, presumably of E. rotundatus. An ontogenetic flange formation is also known from E. danae and the "Piesproops", but the timing differs between all three species. In E. rotundatus, the flange develops rather late, but then comparably abruptly, which makes this development more metamorphic in relation to development in the other species.


An unusual 100-million-year old holometabolan larva with a piercing mouth cone.

  • Joachim T Haug‎ et al.
  • PeerJ‎
  • 2020‎

Holometabola is a hyperdiverse group characterised by a strong morphological differentiation between early post-embryonic stages (= larvae) and adults. Adult forms of Holometabola, such as wasps, bees, beetles, butterflies, mosquitoes or flies, are strongly differentiated concerning their mouth parts. The larvae most often seem to retain rather plesiomorphic-appearing cutting-grinding mouth parts. Here we report a new unusual larva preserved in Burmese amber. Its mouth parts appear beak-like, forming a distinct piercing mouth cone. Such a morphology is extremely rare among larval forms, restricted to those of some beetles and lacewings. The mouth parts of the new fossil are forward oriented (prognathous). Additionally, the larva has distinct subdivisions of tergites and sternites into several sclerites. Also, the abdomen segments bear prominent protrusions. We discuss this unusual combination of characters in comparison to the many different types of holometabolan larvae. The here reported larva is a new addition to the 'unusual zoo' of the Cretaceous fauna including numerous, very unusual appearing forms that have gone extinct at the Cretaceous-Palaeogene boundary.


A new fossil mantis shrimp and the convergent evolution of a lobster-like morphotype.

  • Carolin Haug‎ et al.
  • PeerJ‎
  • 2021‎

Eumalacostracan crustaceans all have a more or less stereotypic body organisation in the sense of tagmosis. Originally, this included a head with six segments (ocular segment plus five appendage-bearing segments), a thorax region with eight segments, and a pleon with six segments. Interestingly, despite these restrictions in variability in terms of tagmosis, the morphological diversity within Eumalacostraca is rather high. A group providing representative examples that are commonly known is Decapoda. Decapodan crustaceans include shrimp-like forms, lobster-like forms and crab-like forms. The stem species of Eucarida, the group including Decapoda and Euphausiacea, presumably possessed a rather shrimp-like morphology, quite similar to the stem species of Eumalacostraca. Also two other lineages within Eumalacostraca, namely Hoplocarida (with the mantis shrimps as modern representatives) and Neocarida (with the sister groups Thermosbaenacea and Peracarida) evolved from the shrimp-like body organisation to include a lobster-like one. In this study, we demonstrate that the stepwise evolution towards a lobster morphotype occurred to a certain extent in similar order in these three lineages, Hoplocarida, Eucarida and Peracarida, leading to similar types of derived body organisation. This evolutionary reconstruction is based not only on observations of modern fauna, but especially on exceptionally preserved Mesozoic fossils, including the description of a new species of mantis shrimps bridging the morphological gap between the more ancestral-appearing Carboniferous forms and the more modern-appearing Jurassic forms. With this, Mesozoic eumalacostracans represent an important (if not unique) 'experimental set-up' for research on factors leading to convergent evolution, the understanding of which is still one of the puzzling challenges of modern evolutionary theory.


The implications of a Silurian and other thylacocephalan crustaceans for the functional morphology and systematic affinities of the group.

  • Carolin Haug‎ et al.
  • BMC evolutionary biology‎
  • 2014‎

Thylacocephala is a group of enigmatic extinct arthropods. Here we provide a full description of the oldest unequivocal thylacocephalan, a new genus and species Thylacares brandonensis, which is present in the Silurian Waukesha fauna from Wisconsin, USA. We also present details of younger, Jurassic specimens, from the Solnhofen lithographic limestones, which are crucial to our interpretation of the systematic position of Thylacocephala. In the past, Thylacocephala has been interpreted as a crustacean ingroup and as closely related to various groups such as cirripeds, decapods or remipeds.


A new calmanostracan crustacean species from the Cretaceous Yixian Formation and a simple approach for differentiating fossil tadpole shrimps and their relatives.

  • Philipp Wagner‎ et al.
  • Zoological letters‎
  • 2019‎

Calmanostraca is a group of branchiopod eucrustaceans, with Triops cancriformis and Lepidurus apus as most prominent representatives. Both are regularly addressed with the inaccurate tag "living fossil", suggesting that the morphology has remained stable for several millions of years. Yet, T. cancriformis and L. apus represent only a fraction of the morphological diversity occurring in Calmanostraca, comprising the two groups Notostraca and Kazacharthra. Notostracans, commonly called tadpole shrimps, comprise the two groups Lepidurus and Triops with their elongated and rather narrow (in dorsal view) head shields. Kazacharthrans are exclusively fossil calmanostracans with broad and rather short shields, known from the Jurassic and Triassic period. One formation where fossil calmanostracans have been found is the Yixian Formation of northeastern China (Lower Cretaceous, 125-121 million years). It is part of the Jehol Group, an ecosystem known for its exceptionally well-preserved fossils, including vertebrates and plants, but also diverse arthropods. Two calmanostracan species have to date been described from the Yixian Formation, Jeholops hongi and Chenops yixianensis.


Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex.

  • Nikolai H Jung‎ et al.
  • PloS one‎
  • 2016‎

Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M1). Here, we aimed to test the plasticity-inducing capabilities of a novel protocol that merged TBS and QPS. 360 bursts of quadri-pulse TBS (qTBS) were continuously given to M1 at 90% of active motor threshold (1440 full-sine pulses). In a first experiment, stimulation frequency of each burst was set to 666 Hz to mimic the rhythmicity of the descending cortico-spinal volleys that are elicited by TMS (i.e., I-wave periodicity). In a second experiment, burst frequency was set to 200 Hz to maximize postsynaptic Ca2+ influx using a temporal pattern unrelated to I-wave periodicity. The second phase of sinusoidal TMS pulses elicited either a posterior-anterior (PA) or anterior-posterior (AP) directed current in M1. Motor evoked potentials (MEPs) were recorded before and after qTBS to probe changes in cortico-spinal excitability. PA-qTBS at 666 Hz caused a decrease in PA-MEP amplitudes, whereas AP-qTBS at 666 Hz induced an increase in mean AP-MEP amplitudes. At a burst frequency of 200 Hz, PA-qTBS and AP-qTBS produced an increase in cortico-spinal excitability outlasting for at least 60 minutes in PA- and AP-MEP amplitudes, respectively. Continuous qTBS at 666 Hz or 200 Hz can induce lasting changes in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1.


A new glimpse on Mesozoic zooplankton-150 million-year-old lobster larvae.

  • Joachim T Haug‎ et al.
  • PeerJ‎
  • 2017‎

Larvae of malacostracan crustaceans represent a large fraction of modern day zooplankton. Plankton is not only a major part of the modern marine ecosystem, but must have played an important role in the ecosystems of the past as well. Unfortunately, our knowledge about plankton composition of the past is still quite limited. As an important part of today's zooplankton, malacostracan larvae are still a rarity in the fossil record; many types of malacostracan larvae dominating the modern plankton have so far not been found as fossils. Here we report a new type of fossil malacostracan larva, found in the 150 million years old lithographic limestones of southern Germany (Solnhofen Lithographic Limestones). The three rather incomplete specimens mainly preserve the telson. A pronounced middle spine on the posterior edge of these specimens indicates that they are either larval forms of a clawed lobster or of an axiidean lobster, or of a closer relative to one of the two groups. The tergo-pleura are drawn out into distinct spines in one specimen, further supporting the interpretation as a larva of a clawed lobster or an early relative. The telson morphology also shows adaptations to a prolonged planktic life style, the latero-posterior edges are drawn out into distinct spines. Similar adaptations are known in larvae of the modern homarid lobster Nephrops norvegicus, not necessarily indicating a closer relationship, but convergent life styles. The new finds provide an important new insight into the composition of Mesozoic zooplankton and demonstrate the preservation potential of lithographic limestones.


An exceptionally preserved 110 million years old praying mantis provides new insights into the predatory behaviour of early mantodeans.

  • Marie K Hörnig‎ et al.
  • PeerJ‎
  • 2017‎

Mantodeans or praying mantises are flying insects and well known for their raptorial behaviour, mainly performed by their first pair of thoracic appendages. We describe here a new, exceptionally preserved specimen of the early mantodean Santanmantis axelrodi Grimaldi, 2003 from the famous 110 million years old Crato Formation, Brazil. The incomplete specimen preserves important morphological details, which were not known in this specific form before for this species or any other representative of Mantodea. Unlike in modern representatives or other fossil forms of Mantodea not only the first pair of thoracic appendages shows adaptations for predation. The femora of the second pair of thoracic appendages bear numerous strong, erect spines which appear to have a sharp tip, with this strongly resembling the spines of the first pair of thoracic appendages. This indicates that individuals of S. axelrodi likely used at least two pairs of thoracic appendages to catch prey. This demonstrates that the prey-catching behaviour was more diverse in early forms of praying mantises than anticipated.


Fossil dragonfly-type larva with lateral abdominal protrusions and implications on the early evolution of Pterygota.

  • Joachim T Haug‎ et al.
  • iScience‎
  • 2021‎

Aquatic larvae are known in three early branches of Pterygota: Ephemeroptera (mayflies), Plecoptera (stoneflies), and Odonata (dragonflies, damselflies). A common origin of these larvae has been suggested, yet also counterarguments have been put forward, for example, the different position of larval gills: laterally on the abdomen in Ephemeroptera, terminally in Odonata, variably in Plecoptera. We discuss recent fossil findings and report a new dragonfly-type larva from Kachin amber (Myanmar), which possesses ancestral characters such as a terminal filum, maintained in ephemeropterans, but lost in modern odonatan larvae. The new larva possesses lateral protrusions on the abdominal segments where in other lineages gills occur. Together with other fossils, such as a plecopteran retaining lateral gills on the abdomen, this indicates that lateral protrusions on the abdomen might have well been an ancestral feature, removing one important argument against the idea of an aquatic larva in the ground pattern of Pterygota.


An Expanded View on the Morphological Diversity of Long-Nosed Antlion Larvae Further Supports a Decline of Silky Lacewings in the Past 100 Million Years.

  • Colin Hassenbach‎ et al.
  • Insects‎
  • 2023‎

Lacewings have been suggested to be a relict group. This means that the group of lacewings, Neuroptera, should have been more diverse in the past, which also applies to many ingroups of Neuroptera. Psychopsidae, the group of silky lacewings, is one of the ingroups of Neuroptera which is relatively species-poor in the modern fauna. Larvae of the group Psychopsidae, long-nosed antlions, can be easily identified as such in being larvae of antlion-like lacewings without teeth in their stylets (=compound structure of mandible and maxilla), with empodia (=attachment structures on legs) and with a prominent forward-protruding labrum. Therefore, such larvae can also be recognised in the fossil record. An earlier study demonstrated a decline in the morphological diversity of long-nosed antlion larvae over the past 100 million years. Here, we report several dozen new long-nosed antlion larvae and expand the earlier quantitative study. Our results further corroborate the decline of silky lacewings. Yet, a lack of an indication of saturation indicates that we have still not approached the original diversity of long-nosed antlions in the Cretaceous.


100 Million-year-old straight-jawed lacewing larvae with enormously inflated trunks represent the oldest cases of extreme physogastry in insects.

  • Joachim T Haug‎ et al.
  • Scientific reports‎
  • 2022‎

Physogastry is a phenomenon occurring in Euarthropoda and describes an extreme inflation of (parts of) the trunk. It is best known from ticks, termite queens, or honey-pot ants, but can also be found in several other representatives of Euarthropoda. Physogastry has so far rarely been seen in the fossil record. We describe here an example of physogastry in two lacewing larvae (Neuroptera) enclosed in a single piece of Kachin amber (ca. 100 Ma old). We measured head and trunk ratios of different physogastric and non-physogastric representatives of Euarthropoda. Plotting these ratios shows that the new larvae, which display quite extremely inflated trunks, are very similar to ticks or honey-pot ants, but also to certain lacewing larvae of the group Berothidae (beaded lacewings). Outline analysis of head capsule and mouthparts (stylets) further suggests a position within Berothidae. Physogastry is presumed to be linked with living in confined spaces such as wood galleries or soil. Indeed, at least some larvae of Berothidae are known to live inside termite nests for part of their larval life phase, a habit the new larvae may also have had. The new record represents the oldest case of extreme physogastry in insects known to date.


On the sighted ancestry of blindness - exceptionally preserved eyes of Mesozoic polychelidan lobsters.

  • Denis Audo‎ et al.
  • Zoological letters‎
  • 2016‎

Modern representatives of Polychelida (Polychelidae) are considered to be entirely blind and have largely reduced eyes, possibly as an adaptation to deep-sea environments. Fossil species of Polychelida, however, appear to have well-developed compound eyes preserved as anterior bulges with distinct sculpturation.


High-level phylogenetic analysis using developmental sequences: the Cambrian +Martinssonia elongata, +Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution.

  • Joachim T Haug‎ et al.
  • Arthropod structure & development‎
  • 2010‎

The ontogenetic sequence of +Martinssonia elongata, a derivative of the stem lineage of Eucrustacea, has been re-investigated. Morphological and morphometric data provide a revision of the original description of this species. Specimens originally assigned to second and third developmental stages have been removed from the +M. elongata sequence and assigned, together with several larger specimens, to an entirely new species, +rMusacaris gerdgeyeri gen et. sp. nov having a completely unsegmented body, giving the appearance of a giant euarthropod head larva. This is interpreted either as a hypertrophied larva or a late developmental stage of a neotenic species. Only the earliest unsegmented larvae and segmented instars of the original sequence are ascribed to +M. elongata. The two species are apparently closely related and are closer to Labrophora (+Phosphatocopina + Eucrustacea) than to other Cambrian " 'Orsten' crustacean stem derivatives". The ontogenetic sequences of the two taxa and those of the other derivatives of the recently investigated labrophoran stem lineage indicate several heterochronic peramorphic ('adultising') events during early crustacean evolution. This is most evident in the development of the proximal parts of the appendages.


Changes in the Morphological Diversity of Larvae of Lance Lacewings, Mantis Lacewings and Their Closer Relatives over 100 Million Years.

  • Joachim T Haug‎ et al.
  • Insects‎
  • 2021‎

Neuroptera, the group of lacewings, comprises only about 6000 species in the modern fauna, but is generally assumed to have been more diverse and important in the past. A major factor of the modern-day ecological diversity of the group, and supposedly in the past as well, is represented by the highly specialised larval forms of lacewings. Quantitative analyses of the morphology of larvae revealed a loss of morphological diversity in several lineages. Here we explored the diversity of the larvae of mantis lacewings (Mantispidae), lance lacewings (Osmylidae), beaded lacewings (Berothidae and Rhachiberothidae, the latter potentially an ingroup of Berothidae), and pleasing lacewings (Dilaridae), as well as fossil larvae, preserved in amber, resembling these. We used shape analysis of the head capsule and stylets (pair of conjoined jaws) as a basis due to the high availability of this body region in extant and fossil specimens and the ecological importance of this region. The analysis revealed a rather constant morphological diversity in Berothidae. Mantispidae appears to have lost certain forms of larvae, but has seen a drastic increase of larval diversity after the Cretaceous; this is in contrast to a significant decrease in diversity in adult forms.


Intraspecific variation in the Cambrian: new observations on the morphology of the Chengjiang euarthropod Sinoburius lunaris.

  • Michel Schmidt‎ et al.
  • BMC ecology and evolution‎
  • 2021‎

The Chengjiang biota from southwest China (518-million-years old, early Cambrian) has yielded nearly 300 species, of which more than 80 species represent early chelicerates, crustaceans and relatives. The application of µCT-techniques combined with 3D software (e.g., Drishti), has been shown to be a powerful tool in revealing and analyzing 3D features of the Chengjiang euarthropods. In order to address several open questions that remained from previous studies on the morphology of the xandarellid euarthropod Sinoburius lunaris, we reinvestigated the µCT data with Amira to obtain a different approach of visualization and to generate new volume-rendered models. Furthermore, we used Blender to design 3D models showing aspects of intraspecific variation.


The Diversity of Aphidlion-like Larvae over the Last 130 Million Years.

  • Joachim T Haug‎ et al.
  • Insects‎
  • 2022‎

Aphidlions are larvae of certain lacewings (Neuroptera), and more precisely larvae of the groups Chrysopidae, green lacewings, and Hemerobiidae, brown lacewings. The name 'aphidlion' originates from their ecological function as specialised predators of aphids. Accordingly, they also play an economic role as biological pest control. Aphidlions have, mostly, elongated spindle-shaped bodies, and similarly to most lacewing larvae they are equipped with a pair of venom-injecting stylets. Fossils interpreted as aphidlions are known to be preserved in amber from the Cretaceous (130 and 100 million years ago), the Eocene (about 35 million years ago) and the Miocene (about 15 million years ago) ages. In this study, new aphidlion-like larvae are reported from Cretaceous amber from Myanmar (about 100 million years old) and Eocene Baltic amber. The shapes of head and stylets were compared between the different time slices. With the newly described fossils and specimens from the literature, a total of 361 specimens could be included in the analysis: 70 specimens from the Cretaceous, 5 from the Eocene, 3 from the Miocene, 188 extant larvae of Chrysopidae, and 95 extant larvae of Hemerobiidae. The results indicate that the diversity of head shapes remains largely unchanged over time, yet there is a certain increase in the diversity of head shapes in the larvae of Hemerobiidae. In certain other groups of Neuroptera, a distinct decrease in the diversity of head shapes in larval stages was observed.


Quantitative analysis of lacewing larvae over more than 100 million years reveals a complex pattern of loss of morphological diversity.

  • Carolin Haug‎ et al.
  • Scientific reports‎
  • 2023‎

Loss of biodiversity and especially insect decline are widely recognised in modern ecosystems. This decline has an enormous impact due to the crucial ecological roles of insects as well as their economic relevance. For comparison, the fossil record can provide important insights on past biodiversity losses. One group of insects, for which a significant decline over the last 100 million years has often been postulated, but not demonstrated quantitatively, is Neuroptera (lacewings). Many adult lacewings are pollinators, while the larvae are mostly predators, which becomes very obvious from their prominent stylet-like mouthparts. We investigated the fossil record of larvae of all neuropteran lineages as well as a large share of extant neuropteran larvae. Based on these, we performed an outline analysis of the head with stylets. This analysis provides a quantitative frame for recognising the decline of lacewings since the Cretaceous, indicating also a severe loss of ecological roles.


The Morphological Diversity of Dragon Lacewing Larvae (Nevrorthidae, Neuroptera) Changed More over Geological Time Scales Than Anticipated.

  • Laura Mengel‎ et al.
  • Insects‎
  • 2023‎

Nevrorthidae, the group of dragon lacewings, has often been considered a relic group. Today, dragon lacewings show a scattered distribution, with some species occurring in southern Europe, Japan, Australia, and one in China. The idea that this distribution is only a remnant of an originally larger distribution is further supported by fossils of the group preserved in ambers from the Baltic region (Eocene, ca. 35-40 MaBP) and Myanmar (Kachin amber, Cretaceous, ca. 100 MaBP). Larvae of the group are slender and elongated and live mostly in water. Yet, larvae are in fact very rare. So far, only slightly more than 30 larval specimens, counting all extant and fossil larvae, have been depicted in the literature. Here, we report numerous additional specimens, including extant larvae, but also fossil ones from Baltic and Kachin amber. Together with the already known ones, this sums up to over 100 specimens. We analysed quantitative aspects of the morphology of these larvae and compared them over time to identify changes in the diversity. Despite the enriched sample size, the data set is still unbalanced, with, for example, newly hatched larvae (several dozen specimens) only known from the Eocene. We expected little change in larval morphology over geological time, as indicated by earlier studies. However, on the contrary, we recognised morphologies present in fossils that are now extinct. This result is similar to those for other groups of lacewings which have a relic distribution today, as these have also suffered a loss in diversity in larval forms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: