Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts.

  • Joachim T Haug‎ et al.
  • Zoological letters‎
  • 2019‎

Biological diversity is a hot topic in current research, especially its observed decrease in modern times. Investigations of past ecosystems offer additional insights to help better understand the processes underlying biodiversity. The Cretaceous period is of special interest in this context, especially with respect to arthropods. During that period, representatives of many modern lineages appeared for the first time, while representatives of more ancient groups also co-occurred. At the same time, side branches of radiating groups with 'experimental morphologies' emerged that seemed to go extinct shortly afterwards. However, larval forms, with their morphological diversity, are largely neglected in such studies, but may provide important insights into morphological and ecological diversity and its changes in the past.


A new calmanostracan crustacean species from the Cretaceous Yixian Formation and a simple approach for differentiating fossil tadpole shrimps and their relatives.

  • Philipp Wagner‎ et al.
  • Zoological letters‎
  • 2019‎

Calmanostraca is a group of branchiopod eucrustaceans, with Triops cancriformis and Lepidurus apus as most prominent representatives. Both are regularly addressed with the inaccurate tag "living fossil", suggesting that the morphology has remained stable for several millions of years. Yet, T. cancriformis and L. apus represent only a fraction of the morphological diversity occurring in Calmanostraca, comprising the two groups Notostraca and Kazacharthra. Notostracans, commonly called tadpole shrimps, comprise the two groups Lepidurus and Triops with their elongated and rather narrow (in dorsal view) head shields. Kazacharthrans are exclusively fossil calmanostracans with broad and rather short shields, known from the Jurassic and Triassic period. One formation where fossil calmanostracans have been found is the Yixian Formation of northeastern China (Lower Cretaceous, 125-121 million years). It is part of the Jehol Group, an ecosystem known for its exceptionally well-preserved fossils, including vertebrates and plants, but also diverse arthropods. Two calmanostracan species have to date been described from the Yixian Formation, Jeholops hongi and Chenops yixianensis.


On the sighted ancestry of blindness - exceptionally preserved eyes of Mesozoic polychelidan lobsters.

  • Denis Audo‎ et al.
  • Zoological letters‎
  • 2016‎

Modern representatives of Polychelida (Polychelidae) are considered to be entirely blind and have largely reduced eyes, possibly as an adaptation to deep-sea environments. Fossil species of Polychelida, however, appear to have well-developed compound eyes preserved as anterior bulges with distinct sculpturation.


Functional morphology of giant mole crab larvae: a possible case of defensive enrollment.

  • Nicole R Rudolf‎ et al.
  • Zoological letters‎
  • 2016‎

Mole crabs (Hippidae) are morphologically distinct animals within Meiura, the "short-tailed" crustaceans. More precisely, Hippidae is an ingroup of Anomala, the group which includes squat lobsters, hermit crabs, and numerous "false" crabs. Within Meiura, Anomala is the sister group to Brachyura, which includes all true crabs. Most meiuran crustaceans develop through two specific larval phases. The first, pelagic one is the zoea phase, which is followed by the transitory megalopa phase (only one stage). Zoea larvae are rather small, usually having a total size of only a few millimeters. Zoea larvae of some hippidan species grow significantly larger, up to 15 mm in size, making them the largest known zoea larvae of all anomalan, and probably all meiuran, crustaceans. It has been suggested that such giant larvae may be adapted to a specific defensive strategy; i.e., enrollment. However, to date such giant larvae represent a rarity.


The ride of the parasite: a 100-million-year old mantis lacewing larva captured while mounting its spider host.

  • Joachim T Haug‎ et al.
  • Zoological letters‎
  • 2018‎

Adult mantis lacewings, neuropteran holometabolan insects of the group Mantispidae, possess anterior walking legs transformed into prey-catching grasping appendages reminiscent of those of praying mantises. While adult mantis lacewings are hence active "wait-and-catch" predators, the larvae of many mantis lacewings have a quite different biology: first-stage larvae seek out female spiders, mount them, and either wait until the spider has produced an egg sac or, in some cases, choose a female already bearing an egg sac. The larva then enters the egg sac and feeds on the eggs. While first stage larvae are highly mobile with comparably long legs and a certain degree of dorso-ventral flattening ("campodeiform"), larval stages two and three are almost immobile, grub-like, and simply remain within the egg sac. Fossils of mantis lacewings are relatively rare, fossils of larval mantis lacewings are even rarer; only a single larva sitting on a juvenile spider has been described from ca. 50 million year old Baltic amber.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: