Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 501 papers

Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.

  • Min Guo‎ et al.
  • Structure (London, England : 1993)‎
  • 2008‎

The Spt4-Spt5 complex is an essential RNA polymerase II elongation factor found in all eukaryotes and important for gene regulation. We report here the crystal structure of Saccharomyces cerevisiae Spt4 bound to the NGN domain of Spt5. This structure reveals that Spt4-Spt5 binding is governed by an acid-dipole interaction between Spt5 and Spt4. Mutations that disrupt this interaction disrupt the complex. Residues forming this pivotal interaction are conserved in the archaeal homologs of Spt4 and Spt5, which we show also form a complex. Even though bacteria lack a Spt4 homolog, the NGN domains of Spt5 and its bacterial homologs are structurally similar. Spt4 is located at a position that may help to maintain the functional conformation of the following KOW domains in Spt5. This structural and evolutionary perspective of the Spt4-Spt5 complex and its homologs suggest that it is an ancient, core component of the transcription elongation machinery.


Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats.

  • Linyi Li‎ et al.
  • PloS one‎
  • 2015‎

Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat oxidation through the activation of SIRT1 and AMPK signaling.


Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury.

  • Weiwei Lin‎ et al.
  • Scientific reports‎
  • 2015‎

Autophagy is essentially a metabolic process, but its in vivo role in nuclear radioprotection remains unexplored. We observed that ex vivo autophagy activation reversed the proliferation inhibition, apoptosis, and DNA damage in irradiated hematopoietic cells. In vivo autophagy activation improved bone marrow cellularity following nuclear radiation exposure. In contrast, defective autophagy in the hematopoietic conditional mouse model worsened the hematopoietic injury, reactive oxygen species (ROS) accumulation and DNA damage caused by nuclear radiation exposure. Strikingly, in vivo defective autophagy caused an absence or reduction in regulatory proteins critical to both homologous recombination (HR) and non-homologous end joining (NHEJ) DNA damage repair pathways, as well as a failure to induce these proteins in response to nuclear radiation. In contrast, in vivo autophagy activation increased most of these proteins in hematopoietic cells. DNA damage assays confirmed the role of in vivo autophagy in the resolution of double-stranded DNA breaks in total bone marrow cells as well as bone marrow stem and progenitor cells upon whole body irradiation. Hence, autophagy protects the hematopoietic system against nuclear radiation injury by conferring and intensifying the HR and NHEJ DNA damage repair pathways and by removing ROS and inhibiting apoptosis.


Indirect comparison showed survival benefit from adjuvant chemoradiotherapy in completely resected gastric cancer with d2 lymphadenectomy.

  • Qiong Yang‎ et al.
  • Gastroenterology research and practice‎
  • 2013‎

Background. Little data on directly comparing chemoradiotherapy with observation has yet been published in the setting of adjuvant therapy for resected gastric cancer who underwent D2 lymphadenectomy. The present indirect comparison aims to provide more evidence on comparing the two approaches. Methods. We conducted a systematic review of randomized controlled trials, extracted time-to-event data using Tierney methods (when not reported), and performed indirect comparison to obtain the relative hazards of adjuvant chemoradiotherapy to observation on overall and disease-free survival. Results. seven randomized controlled trials were identified. Three trials compared adjuvant chemoradiotherapy with adjuvant chemotherapy, and 4 trials compared adjuvant chemotherapy with observation. Using indirect comparison, the relative hazards of adjuvant chemoradiotherapy to observation were 0.43 (95% CI: 0.33-0.55) in disease-free survival and 0.52 (95% CI: 0.38-0.71) in overall survival for completely resected gastric cancer with D2 lymphadenectomy. Conclusions. Postoperative chemoradiotherapy can prolong survival and decrease recurrence in patients with resected gastric cancer who underwent D2 gastrectomy. Molecular biomarker might be a promising direction in the prediction of clinical outcome to postoperative chemoradiotherapy, which warranted further study.


Efficacy of adding bevacizumab in the first-line chemotherapy of metastatic colorectal cancer: evidence from seven randomized clinical trials.

  • Yan-Xian Chen‎ et al.
  • Gastroenterology research and practice‎
  • 2014‎

Background. Efficacy of adding bevacizumab in first-line chemotherapy of metastatic colorectal cancer (mCRC) has been controversial. The aim of this study is to gather current data to analyze efficacy of adding bevacizumab to the most used combination first-line chemotherapy in mCRC, based on the 2012 meta-analysis reported by Macedo et al.  Methods. Medline, EMBASE and Cochrane library, meeting presentations and abstracts were searched. Eligible studies were randomized controlled trials (RCTs) which evaluated first-line chemotherapy with or without bevacizumab in mCRC. The extracting data were included and examined in the meta-analysis according to the type of chemotherapy regimen. Results. Seven trials, totaling 3436 patients, were analyzed. Compared with first-line chemothery alone, the adding of bevacizumab did not show clinical benefit for OS both in first-line therapy and the most used combination chemotherapy (HR = 0.89; 95% CI = 0.78-1.02; P = 0.08; HR = 0.93; 95% CI = 0.83-1.05; P = 0.24). In contrast with OS, the addition of bevacizumab resulted in significant improvement for PFS (HR = 0.68; 95% CI = 0.59-0.78; P < 0.00001). Moreover, it also demonstrated statistical benefit for PFS in the most used combination first-line chemotherapy (HR = 0.84; 95% CI = 0.75-0.94; P = 0.002). And the subgroup analysis indicated only capacitabine-based regimens were beneficial. Conclusions. This meta-analysis shows that the addition of bevacizumab to FOLFOX/FOLFIRI/XELOX regimens might not be beneficial in terms of OS. Benefit has been seen when PFS has been taken into account. In subgroup analysis, benefit adding bevacizumab has been seen when capecitabine-based regimens are used. Further studies are warranted to explore the combination with bevacizumab.


Mitochondrial regulation of NADPH oxidase in hindlimb unweighting rat cerebral arteries.

  • Ran Zhang‎ et al.
  • PloS one‎
  • 2014‎

Exposure to microgravity results in post-flight cardiovascular deconditioning and orthostatic intolerance in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been indicated in this process. To elucidate the mechanism for this condition, we investigated whether mitochondria regulated NADPH oxidase in hindlimb unweighting (HU) rat cerebral and mesenteric arteries. Four-week HU was used to simulate microgravity in rats. Vascular superoxide generation, protein and mRNA levels of Nox2/Nox4, and the activity of NADPH oxidase were examined in the present study. Compared with control rats, the levels of superoxide increased in cerebral (P<0.001) but not in mesenteric vascular smooth muscle cells. The protein and mRNA levels of Nox2 and Nox4 were upregulated significantly (P<0.001 and P<0.001 for Nox2, respectively; P<0.001 and P<0.001 for Nox4, respectively) in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly by HU (P<0.001) in cerebral arteries but not in mesenteric arteries. Chronic treatment with mitochondria-targeted antioxidant mitoTEMPO attenuated superoxide levels (P<0.001), decreased the protein and mRNA expression levels of Nox2/Nox4 (P<0.01 and P<0.05 for Nox2, respectively; P<0.001 and P<0.001 for Nox4, respectively) and the activity of NADPH oxidase (P<0.001) in HU rat cerebral arteries, but exerted no effects on HU rat mesenteric arteries. Therefore, mitochondria regulated the expression and activity of NADPH oxidases during simulated microgravity. Both mitochondria and NADPH oxidase participated in vascular redox status regulation.


Bipolar sealer not superior to standard electrocautery in primary total hip arthroplasty: a meta-analysis.

  • Yang Yang‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2014‎

To assess whether bipolar sealer has advantages over standard electrocautery in primary total hip arthroplasty (THA).


Effects of an oral allosteric AKT inhibitor (MK-2206) on human nasopharyngeal cancer in vitro and in vivo.

  • Yuan-Yuan Zhao‎ et al.
  • Drug design, development and therapy‎
  • 2014‎

Protein kinase B (AKT) signaling frequently is deregulated in human cancers and plays an important role in nasopharyngeal carcinoma (NPC). This preclinical study investigated the effect of MK-2206, a potent allosteric AKT inhibitor, on human NPC cells in vitro and in vivo.


Association study of TPH2 polymorphisms and bipolar disorder in the Han Chinese population.

  • Shiqing Chen‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2015‎

Bipolar disorder (BPD) is a serious and common mental disorder with high heritability. The serotonergic system is known to be implicated in the etiology of the disorder. Tryptophan hydroxylase isoform-2 (TPH2), which controls the synthesis of serotonin in the brain, has been suggested as a candidate gene for BDP. The aim of this study was to examine the association between the polymorphisms in TPH2 and BPD.


The child as econometrician: a rational model of preference understanding in children.

  • Christopher G Lucas‎ et al.
  • PloS one‎
  • 2014‎

Recent work has shown that young children can learn about preferences by observing the choices and emotional reactions of other people, but there is no unified account of how this learning occurs. We show that a rational model, built on ideas from economics and computer science, explains the behavior of children in several experiments, and offers new predictions as well. First, we demonstrate that when children use statistical information to learn about preferences, their inferences match the predictions of a simple econometric model. Next, we show that this same model can explain children's ability to learn that other people have preferences similar to or different from their own and use that knowledge to reason about the desirability of hidden objects. Finally, we use the model to explain a developmental shift in preference understanding.


Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel.

  • Haiyan Sun‎ et al.
  • Scientific reports‎
  • 2014‎

Current technologies for studying ion channels are fundamentally limited because of their inability to functionally link ion channel activity to cellular pathways. Herein, we report the use of label-free cell phenotypic profiling to decode the composition and signaling of an endogenous ATP-sensitive potassium ion channel (KATP) in HepG2C3A, a hepatocellular carcinoma cell line. Label-free cell phenotypic agonist profiling showed that pinacidil triggered characteristically similar dynamic mass redistribution (DMR) signals in A431, A549, HT29 and HepG2C3A, but not in HepG2 cells. Reverse transcriptase PCR, RNAi knockdown, and KATP blocker profiling showed that the pinacidil DMR is due to the activation of SUR2/Kir6.2 KATP channels in HepG2C3A cells. Kinase inhibition and RNAi knockdown showed that the pinacidil activated KATP channels trigger signaling through Rho kinase and Janus kinase-3, and cause actin remodeling. The results are the first demonstration of a label-free methodology to characterize the composition and signaling of an endogenous ATP-sensitive potassium ion channel.


Using Rich Data on Comorbidities in Case-Control Study Design with Electronic Health Record Data Improves Control of Confounding in the Detection of Adverse Drug Reactions.

  • Daniel Backenroth‎ et al.
  • PloS one‎
  • 2016‎

Recent research has suggested that the case-control study design, unlike the self-controlled study design, performs poorly in controlling confounding in the detection of adverse drug reactions (ADRs) from administrative claims and electronic health record (EHR) data, resulting in biased estimates of the causal effects of drugs on health outcomes of interest (HOI) and inaccurate confidence intervals. Here we show that using rich data on comorbidities and automatic variable selection strategies for selecting confounders can better control confounding within a case-control study design and provide a more solid basis for inference regarding the causal effects of drugs on HOIs. Four HOIs are examined: acute kidney injury, acute liver injury, acute myocardial infarction and gastrointestinal ulcer hospitalization. For each of these HOIs we use a previously published reference set of positive and negative control drugs to evaluate the performance of our methods. Our methods have AUCs that are often substantially higher than the AUCs of a baseline method that only uses demographic characteristics for confounding control. Our methods also give confidence intervals for causal effect parameters that cover the expected no effect value substantially more often than this baseline method. The case-control study design, unlike the self-controlled study design, can be used in the fairly typical setting of EHR databases without longitudinal information on patients. With our variable selection method, these databases can be more effectively used for the detection of ADRs.


Radiofrequency Ablation versus Liver Resection for Colorectal Cancer Liver Metastasis: An Updated Systematic Review and Meta-analysis.

  • Yue Han‎ et al.
  • Chinese medical journal‎
  • 2016‎

Controversial results about the therapeutic value of radiofrequency ablation (RFA) and liver resection (LR) in the treatment of colorectal cancer liver metastasis (CRCLM) have been reported. Thus, we performed the present meta-analysis to summarize the related clinical evidences.


MiR-101 and doxorubicin codelivered by liposomes suppressing malignant properties of hepatocellular carcinoma.

  • Fei Xu‎ et al.
  • Cancer medicine‎
  • 2017‎

MiR-101, an important tumor-suppressive microRNA (miRNA) in hepatocellular carcinoma (HCC), has been affirmed significantly downregulated in HCC and participated in promoting apoptosis, decreasing proliferation and invasiveness of HCC cells, as well as increasing sensitivity of chemotherapeutic drug. However, miR-101-based combination therapies with doxorubicin (DOX) are not reported yet. Recently, nanomaterials-based approaches, especially liposome formulations, have been approved for clinical use and seem to provide a great opportunity to codeliver therapeutic agents for cancer therapy. In this study, we have successfully prepared liposome (L) nanoparticles to efficiently deliver miR-101 and DOX to HCC cells simultaneously. The effects of codelivery system miR-101/doxorubicin liposome (miR-101/DOX-L) on tumor malignant phenotypes of HCC cells were evaluated through analyzing cell proliferation, colony formation, cell migration, cell invasion, cell apoptosis assay, and the expression of related genes. In subcutaneous xenografts developed by HCC cells, the inhibition of tumor growth was analyzed through gross morphology, growth curve, proliferation marker Ki-67, apoptosis signals, and the expression of related genes. These experiments demonstrated that miR-101/DOX-L inhibited tumor properties of liver cancer cells in vitro and in vivo through targeting correlative genes by combinatory role of miR-101 and DOX. In conclusion, our results indicated that liposome nanoparticle is a reliable delivery strategy to codeliver miR-101 and DOX simultaneously, and miR-101- and DOX-based combination therapy can result in significant synergetic antitumor effects in vivo and vitro.


Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors.

  • Eugene Chun‎ et al.
  • Structure (London, England : 1993)‎
  • 2012‎

Structural studies of human G protein-coupled receptors (GPCRs) have recently been accelerated through the use of a fusion partner that was inserted into the third intracellular loop. Using chimeras of the human β(2)-adrenergic and human A(2A) adenosine receptors, we present the methodology and data for the initial selection of an expanded set of fusion partners for crystallizing GPCRs. In particular, use of the thermostabilized apocytochrome b(562)RIL as a fusion partner displays certain advantages over previously utilized fusion proteins, resulting in a significant improvement in stability and structure of GPCR-fusion constructs.


Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (αM).

  • Xiang Xu‎ et al.
  • PloS one‎
  • 2014‎

The urokinase plasminogen activator receptor (uPAR) plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin) to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268-275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR) regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM), a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR.


Postoperative chemoradiotherapy versus postoperative chemotherapy for completely resected gastric cancer with D2 Lymphadenectomy: a meta-analysis.

  • Yuan-Yuan Huang‎ et al.
  • PloS one‎
  • 2013‎

Both chemoradiotherapy and chemotherapy are used in postoperative adjuvant therapy for resected gastric cancer. However, it is controversial whether chemoradiotherapy or chemotherapy is the optimal strategy for patients with gastric cancer after D2 lymphadenectomy. The present meta-analysis aims to provide more evidence on the relative benefits of adjuvant therapies in this setting.


Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro.

  • Xin Huang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate‑associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3‑E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3‑E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin‑V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein‑2 (BMP‑2) and downregulation of the phosphorylation levels in the downstream extracellular signal‑regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration‑dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses osteoblast differentiation by downregulation of BMP-2. These results assist in further understanding the mechanisms of BRONJ.


Decreased functional connectivity density in pain-related brain regions of female migraine patients without aura.

  • Qing Gao‎ et al.
  • Brain research‎
  • 2016‎

Migraine is one of the most prevalent neurological disorders which is suggested to be associated with dysfunctions of the central nervous system. The purpose of the present study was to detect the altered functional connectivity architecture in the large-scale network of the whole brain in migraine without aura (MWoA). Meanwhile, the brain functional hubs which are targeted by MWoA could be identified. A new voxel-based method named functional connectivity density (FCD) mapping was applied to resting-state functional magnetic resonance imaging data of 55 female MWoA patients and 44 age-matched female healthy controls (HC). Comparing to HC, MWoA patients showed abnormal short-range FCD values in bilateral hippocampus, bilateral insula, right amygdale, right anterior cingulate cortex, bilateral putamen, bilateral caudate nucleus and the prefrontal cortex. The results suggested decreased intraregional connectivity of these pain-related brain regions in female MWoA. In addition, short-range FCD values in left prefrontal cortex, putamen and caudate nucleus were significantly negatively correlated with duration of disease in MWoA group, implying the repeated migraine attacks over time may consistently affect the resting-state functional connectivity architecture of these brain hubs. Our findings revealed the dysfunction of brain hubs in female MWoA, and suggested the left prefrontal cortex, putamen and caudate nucleus served as sensitive neuroimaging markers for reflecting the disease duration of female MWoA. This may provide us new insights into the changes in the organization of the large-scale brain network in MWoA.


HMGB1 Promotes Mitochondrial Dysfunction-Triggered Striatal Neurodegeneration via Autophagy and Apoptosis Activation.

  • Lin Qi‎ et al.
  • PloS one‎
  • 2015‎

Impairments in mitochondrial energy metabolism are thought to be involved in many neurodegenerative diseases. The mitochondrial inhibitor 3-nitropropionic acid (3-NP) induces striatal pathology mimicking neurodegeneration in vivo. Previous studies showed that 3-NP also triggered autophagy activation and apoptosis. In this study, we focused on the high-mobility group box 1 (HMGB1) protein, which is important in oxidative stress signaling as well as in autophagy and apoptosis, to explore whether the mechanisms of autophagy and apoptosis in neurodegenerative diseases are associated with metabolic impairment. To elucidate the role of HMGB1 in striatal degeneration, we investigated the impact of HMGB1 on autophagy activation and cell death induced by 3-NP. We intoxicated rat striata with 3-NP by stereotaxic injection and analyzed changes in expression HMGB1, proapoptotic proteins caspase-3 and phospho-c-Jun amino-terminal kinases (p-JNK). 3-NP-induced elevations in p-JNK, cleaved caspase-3, and autophagic marker LC3-II as well as reduction in SQSTM1 (p62), were significantly reduced by the HMGB1 inhibitor glycyrrhizin. Glycyrrhizin also significantly inhibited 3-NP-induced striatal damage. Neuronal death was replicated by exposing primary striatal neurons in culture to 3-NP. It was clear that HMGB1 was important for basal autophagy which was shown by rescue of cells through HMGB1 targeting shRNA approach.3-NP also induced the expression of HMGB1, p-JNK, and LC3-II in striatal neurons, and p-JNK expression was significantly reduced by shRNA knockdown of HMGB1, an effect that was reversed by exogenously increased expression of HMGB1. These results suggest that HMGB1 plays important roles in signaling for both autophagy and apoptosis in neurodegeneration induced by mitochondrial dysfunction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: