Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats.

  • Yujie Wang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Propofol is one of the most widely used intravenous anesthetics. However, repeated exposure to propofol may cause neurodegeneration in the developing brain. Dexmedetomidine (Dex), an α2 adrenoceptor agonist, has been previously demonstrated to provide neuroprotection against neuroapoptosis and neurocognitive impairments induced by several anesthetics. Thus, the current study aimed to investigate the effect of Dex on neonatal propofol-induced neuroapoptosis and juvenile spatial learning/memory deficits. Propofol (30 mg/kg) was intraperiotoneally administered to 7‑day‑old Sprague Dawley rats (n=75) three times each day at 90 min intervals for seven consecutive days with or without Dex (75 µg/kg) treatment 20 min prior to propofol injection. Following repeated propofol exposure, reduced Akt and GSK‑3β phosphorylation, increased cleaved caspase‑3 expression levels, an increased Bax/Bcl‑2 ratio, and increased terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end labeling (TUNEL)‑positive cells in the CA1 hippocampal subregion were observed. Morris Water Maze testing at postnatal day 29 also demonstrated spatial learning and memory deficits following propofol treatment compared with the control group. Notably, these changes were significantly attenuated by Dex pretreatment. The results of the current study demonstrated that Dex ameliorates the neurocognitive impairment induced by repeated neonatal propofol challenge in rats, partially via its anti‑apoptotic action and normalization of the disruption to the PI3K/Akt/GSK‑3β signaling pathway. The present study provides preliminary evidence demonstrating the safety of propofol on the neonatal brain and the potential use of dexmedetomidine pretreatment in pediatric patients.


Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro.

  • Xin Huang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate‑associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3‑E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3‑E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin‑V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein‑2 (BMP‑2) and downregulation of the phosphorylation levels in the downstream extracellular signal‑regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration‑dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses osteoblast differentiation by downregulation of BMP-2. These results assist in further understanding the mechanisms of BRONJ.


NME4 may enhance non‑small cell lung cancer progression by overcoming cell cycle arrest and promoting cellular proliferation.

  • Wenqian Wang‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Nucleoside diphosphate kinase 4 (NME4) is abnormally expressed in a variety of cancer types. However, the function of the NME4 gene in non‑small cell lung cancer (NSCLC) remains to be elucidated. In order to investigate the role of NME4 in NSCLC, the present study detected the expression of the NME4 gene in the Cancer Genome Atlas database, and in BEAS‑2B, NCI‑H1299 and A549 cell lines. NME4 was significantly overexpressed in NSCLC tissues and NSCLC cell lines. Furthermore, lentivirus‑mediated knockdown vector infection, cell proliferation, cell cycle, apoptosis, colony formation and MTT assays were conducted to explore the effect of NME4 on NSCLC in vitro. After knockdown of NME4 with short hairpin RNA, the cell cycle was arrest at the G1 phase, and proliferation and colony formation were inhibited in the NCI‑H1299 and A549 cell lines. The present results suggested that NME4 may serve as a novel tumor promoter, capable of enhancing NSCLC progression by overcoming cell cycle arrest and promoting proliferation.


Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel‑7402/5‑fluorouracil cells.

  • Sunbin Ling‎ et al.
  • Molecular medicine reports‎
  • 2014‎

Metformin exhibits anti‑proliferative effects in tumor cells in vitro and in vivo. The present study investigated the ability of metformin to reverse multidrug resistance (MDR) in human hepatocellular carcinoma Bel‑7402/5‑fluorouracil (5‑Fu; Bel/Fu) cells. The synergistic anti‑proliferative effect of metformin combined with 5‑Fu was evaluated using a Cell Counting kit‑8 assay. The variation in apoptotic rates and cell cycle distribution were evaluated using a flow cytometric assay and variations in target gene and protein expression were monitored using reverse transcription‑polymerase chain reaction and western blot analysis. The results demonstrated that metformin had a synergistic anti‑proliferative effect with 5‑Fu in the Bel/Fu cells. The variations in the number of apoptotic cells and distribution of the cell cycle were consistent with the variability in cell viability. Metformin targeted the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, suppressed the expression of hypoxia‑inducible factor‑1α (HIF‑1α) and transcriptionally downregulated the expression of multidrug resistance protein 1/P‑glycoprotein (P‑gp) and multidrug resistance‑associated protein 1 (MRP1). Collectively, these findings suggested that metformin may target the AMPK/mTOR/HIF‑1α/P‑gp and MRP1 pathways to reverse MDR in hepatocellular carcinoma.


Low-dose testosterone alleviates vascular damage caused by castration in male rats in puberty via modulation of the PI3K/AKT signaling pathway.

  • Jing Zhao‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The aim of the present study was to investigate the effect of testosterone on glucolipid metabolism and vascular injury in male rats, and examine the underlying molecular mechanisms. A total of 40 male Sprague-Dawley rats were divided into a control group (n=10), high-fat-diet + castration group (n=10), high‑fat‑diet + castration + low dose testosterone group (n=10), and high-fat-diet + castration + high dose testosterone group (n=10). Hematoxylin and eosin staining was performed to evaluate the morphology of the thoracic aortic tissues. Immunohistochemical staining was used to detect biomarkers of the phosphoinositide 3‑kinase (PI3K) signaling pathway. The mRNA and protein expression levels of PI3K, AKT, insulin receptor substrate‑1 (IRS‑1), glucose transporter type 4 (GLUT‑4), nuclear factor (NF)‑κB and tumor necrosis factor (TNF)‑α in the aortas were determined using quantitative polymerase chain reaction and Western blot analyses, respectively. Apoptosis in the aortic tissues was detected using a TUNEL assay. Castration induced apoptosis in the animals fed a high‑fat‑diet, whereas low dose testosterone replacement ameliorated the apoptosis in the aorta. However, the levels of apoptosis was more severe following high‑dose testosterone treatment. Low‑dose testosterone induced upregulation in the levels of IRS‑1, AKT, GLUT‑4 protein, NF‑κB, TNF‑α and PI3K, compared with those in the animals fed a high‑fat diet following castration. A high dose of testosterone resulted in a significant decrease in the levels of IRS‑1, AKT, GLUT‑4, NF‑κB, TNF‑α and PI3K. Compared with the rats in the high‑fat diet + castration group, a low dose of testosterone induced upregulation in the mRNA levels of IRS‑1, AKT and GLUT‑4, and downregulation of the mRNA levels of NF‑κB, TNF‑α and PI3K. A high dose of testosterone resulted in a significant decrease in the levels of IRS‑1, AKT and GLUT‑4, and marked increases in the mRNA levels of NF‑κB, TNF‑α and PI3K, compared with the low dose group. Castration induced marked disorders of glucolipid metabolism and vascular injuries in the pubescent male rats. Low‑dose testosterone treatment was found to ameliorate the vascular damage caused by castration via the PI3K/AKT signaling pathway.


Cycloastragenol alleviates airway inflammation in asthmatic mice by inhibiting autophagy.

  • Xueyi Zhu‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Cycloastragenol (CAG), a secondary metabolite from the roots of Astragalus zahlbruckneri, has been reported to exert anti‑inflammatory effects in heart, skin and liver diseases. However, its role in asthma remains unclear. The present study aimed to investigate the effect of CAG on airway inflammation in an ovalbumin (OVA)‑induced mouse asthma model. The current study evaluated the lung function and levels of inflammation and autophagy via measurement of airway hyperresponsiveness (AHR), lung histology examination, inflammatory cytokine measurement and western blotting, amongst other techniques. The results demonstrated that CAG attenuated OVA‑induced AHR in vivo. In addition, the total number of leukocytes and eosinophils, as well as the secretion of inflammatory cytokines, including interleukin (IL)‑5, IL‑13 and immunoglobulin E were diminished in bronchoalveolar lavage fluid of the OVA‑induced murine asthma model. Histological analysis revealed that CAG suppressed inflammatory cell infiltration and goblet cell secretion. Notably, based on molecular docking simulation, CAG was demonstrated to bind to the active site of autophagy‑related gene 4‑microtubule‑associated proteins light chain 3 complex, which explains the reduced autophagic flux in asthma caused by CAG. The expression levels of proteins associated with autophagy pathways were inhibited following treatment with CAG. Taken together, the results of the present study suggest that CAG exerts an anti‑inflammatory effect in asthma, and its role may be associated with the inhibition of autophagy in lung cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: