Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 516 papers

Decreased functional connectivity density in pain-related brain regions of female migraine patients without aura.

  • Qing Gao‎ et al.
  • Brain research‎
  • 2016‎

Migraine is one of the most prevalent neurological disorders which is suggested to be associated with dysfunctions of the central nervous system. The purpose of the present study was to detect the altered functional connectivity architecture in the large-scale network of the whole brain in migraine without aura (MWoA). Meanwhile, the brain functional hubs which are targeted by MWoA could be identified. A new voxel-based method named functional connectivity density (FCD) mapping was applied to resting-state functional magnetic resonance imaging data of 55 female MWoA patients and 44 age-matched female healthy controls (HC). Comparing to HC, MWoA patients showed abnormal short-range FCD values in bilateral hippocampus, bilateral insula, right amygdale, right anterior cingulate cortex, bilateral putamen, bilateral caudate nucleus and the prefrontal cortex. The results suggested decreased intraregional connectivity of these pain-related brain regions in female MWoA. In addition, short-range FCD values in left prefrontal cortex, putamen and caudate nucleus were significantly negatively correlated with duration of disease in MWoA group, implying the repeated migraine attacks over time may consistently affect the resting-state functional connectivity architecture of these brain hubs. Our findings revealed the dysfunction of brain hubs in female MWoA, and suggested the left prefrontal cortex, putamen and caudate nucleus served as sensitive neuroimaging markers for reflecting the disease duration of female MWoA. This may provide us new insights into the changes in the organization of the large-scale brain network in MWoA.


Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea.

  • Memet Emin‎ et al.
  • Science translational medicine‎
  • 2016‎

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH) during transient cessation of breathing, triples the risk for cardiovascular diseases. We used a phage display peptide library as an unbiased approach to investigate whether IH, which is specific to OSA, activates endothelial cells (ECs) in a distinctive manner. The target of a differentially bound peptide on ECs collected from OSA patients was identified as CD59, a major complement inhibitor that protects ECs from the membrane attack complex (MAC). A decreased proportion of CD59 is located on the EC surface in OSA patients compared with controls, suggesting reduced protection against complement attack. In vitro, IH promoted endothelial inflammation predominantly via augmented internalization of CD59 and consequent MAC deposition. Increased internalization of endothelial CD59 in IH appeared to be cholesterol-dependent and was reversed by statins in a CD59-dependent manner. These studies suggest that reduced complement inhibition may mediate endothelial inflammation and increase vascular risk in OSA patients.


Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk-3β signaling disruption, and juvenile cognitive deficits in neonatal rats.

  • Yujie Wang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Propofol is one of the most widely used intravenous anesthetics. However, repeated exposure to propofol may cause neurodegeneration in the developing brain. Dexmedetomidine (Dex), an α2 adrenoceptor agonist, has been previously demonstrated to provide neuroprotection against neuroapoptosis and neurocognitive impairments induced by several anesthetics. Thus, the current study aimed to investigate the effect of Dex on neonatal propofol-induced neuroapoptosis and juvenile spatial learning/memory deficits. Propofol (30 mg/kg) was intraperiotoneally administered to 7‑day‑old Sprague Dawley rats (n=75) three times each day at 90 min intervals for seven consecutive days with or without Dex (75 µg/kg) treatment 20 min prior to propofol injection. Following repeated propofol exposure, reduced Akt and GSK‑3β phosphorylation, increased cleaved caspase‑3 expression levels, an increased Bax/Bcl‑2 ratio, and increased terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end labeling (TUNEL)‑positive cells in the CA1 hippocampal subregion were observed. Morris Water Maze testing at postnatal day 29 also demonstrated spatial learning and memory deficits following propofol treatment compared with the control group. Notably, these changes were significantly attenuated by Dex pretreatment. The results of the current study demonstrated that Dex ameliorates the neurocognitive impairment induced by repeated neonatal propofol challenge in rats, partially via its anti‑apoptotic action and normalization of the disruption to the PI3K/Akt/GSK‑3β signaling pathway. The present study provides preliminary evidence demonstrating the safety of propofol on the neonatal brain and the potential use of dexmedetomidine pretreatment in pediatric patients.


Autophagy maintains ubiquitination-proteasomal degradation of Sirt3 to limit oxidative stress in K562 leukemia cells.

  • Yixuan Fang‎ et al.
  • Oncotarget‎
  • 2016‎

Sirtuin protein family member 3 (Sirt3) has been suggested as a positive regulator in alleviating oxidative stress by acting on the mitochondrial antioxidant machinery in solid tumors; however, its role and regulation in hematological malignancies has been poorly understood. Here, we show that contrary to what has been reported in solid tumors, in K562 leukemia cells elevated Sirt3 was associated with mitochondrial stress, and depletion of Sirt3 decreased reactive oxygen species (ROS) generation and lipid oxidation, but increased the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), suggesting an opposite role of Sirt3 in regulating oxidative stress in the leukemia cells. Notably, loss of autophagy by deletion of autophagy essential gene or by pharmacological inhibition on autophagic degradation caused a significant accumulation of Sirt3. However, induced activation of autophagy did not cause autophagic degradation of Sirt3. Furthermore, inhibiting proteasome activity accumulated Sirt3 in autophagy-intact but not autophagy-defective cells, and disrupting functional autophagy either genetically or pharmacologically caused significantly less ubiquitination of Sirt3. Therefore, our data suggest that basal but not enhanced autophagy activity maintains ubiquitination-proteasomal degradation of Sirt3 to limit lipid oxidative stress, representing an adaptive mechanism by which autophagy, in collaboration with the ubiquitination-proteasomal system, controls oxidative stress by controlling the levels of certain proteins in K562 leukemia cells.


Bacillus anthracis S-layer protein BslA binds to extracellular matrix by interacting with laminin.

  • Yanchun Wang‎ et al.
  • BMC microbiology‎
  • 2016‎

The Bacillus anthracis S-layer protein, BslA, plays a crucial role in mammalian infection. BslA is required to mediate adherence between host cells and vegetative forms of bacteria and this interaction promotes target organs adherence and blood-brain barrier (BBB) penetration in vivo. This study attempts to identify the potential eukaryotic ligand(s) for B. anthracis BslA protein.


The functions and clinical applications of tumor-derived exosomes.

  • Yingkuan Shao‎ et al.
  • Oncotarget‎
  • 2016‎

Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm. They can be secreted by all cell types and transfer information in the form of their contents, which include proteins, lipids and nucleic acids, to other cells throughout the body. They have roles in normal physiological processes as well as in disease development. Here, we review recent findings regarding tumor-derived exosomes, including methods for their extraction and preservation. We also describe the actions of exosomes in tumorigenesis. The exosomal antigen-presenting effect during antitumor immune responses and its suppressive function in immune tolerance are discussed. Finally, we describe the potential application of exosomes to cancer therapy and liquid biopsy.


Immunogenicity and protective efficacy of recombinant fusion proteins containing spike protein of infectious bronchitis virus and hemagglutinin of H3N2 influenza virus in chickens.

  • Lijuan Yin‎ et al.
  • Virus research‎
  • 2016‎

Infectious bronchitis (IB) is an acute and highly contagious viral respiratory disease of chickens and vaccination is the main method for disease control. The S1 protein, which contains several virus neutralization epitopes, is considered to be a target site of vaccine development. However, although protective immune responses could be induced by recombinant S1 protein, the protection rate in chickens was still low (<50%). Here, we generated fused S1 proteins with HA2 protein (rS1-HA2) or transmembrane domain and cytoplasmic tail (rS1-H3(TM)) from hemagglutinin of H3N2 influenza virus. After immunization, animals vaccinated with fusion proteins rS1-HA2 and rS1-H3(TM) demonstrated stronger robust humoral and cellular immune responses than that of rS1 and inactivated M41 vaccine. The protection rates of groups immunized with rS1-HA2 (87%) were significantly higher than the groups inoculated with rS1 (47%) and inactivated M41 vaccine (53%). And chickens injected with rS1-H3(TM) had similar level of protection (73%) comparing to chickens vaccinated with rS1 (47%) (P=0.07). Our data suggest that S1 protein fused to the HA2 or TM proteins from hemagglutinin of H3N2 influenza virus may provide a new strategy for high efficacy recombinant vaccine development against IBV.


Autophagy-associated alpha-arrestin signaling is required for conidiogenous cell development in Magnaporthe oryzae.

  • Bo Dong‎ et al.
  • Scientific reports‎
  • 2016‎

Conidiation patterning is evolutionarily complex and mechanism concerning conidiogenous cell differentiation remains largely unknown. Magnaporthe oryzae conidiates in a sympodial way and uses its conidia to infect host and disseminate blast disease. Arrestins are multifunctional proteins that modulate receptor down-regulation and scaffold components of intracellular trafficking routes. We here report an alpha-arrestin that regulates patterns of conidiation and contributes to pathogenicity in M. oryzae. We show that disruption of ARRDC1 generates mutants which produce conidia in an acropetal array and ARRDC1 significantly affects expression profile of CCA1, a virulence-related transcription factor required for conidiogenous cell differentiation. Although germ tubes normally develop appressoria, penetration peg formation is dramatically impaired and Δarrdc1 mutants are mostly nonpathogenic. Fluorescent analysis indicates that EGFP-ARRDC1 puncta are well colocalized with DsRed2-Atg8, and this distribution profile could not be altered in Δatg9 mutants, suggesting ARRDC1 enters into autophagic flux before autophagosome maturation. We propose that M. oryzae employs ARRDC1 to regulate specific receptors in response to conidiation-related signals for conidiogenous cell differentiation and utilize autophagosomes for desensitization of conidiogenous receptor, which transmits extracellular signal to the downstream elements of transcription factors. Our investigation extends novel significance of autophagy-associated alpha-arrestin signaling to fungal parasites.


Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro.

  • Xin Huang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate‑associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3‑E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3‑E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin‑V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein‑2 (BMP‑2) and downregulation of the phosphorylation levels in the downstream extracellular signal‑regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration‑dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses osteoblast differentiation by downregulation of BMP-2. These results assist in further understanding the mechanisms of BRONJ.


HMGB1 Promotes Mitochondrial Dysfunction-Triggered Striatal Neurodegeneration via Autophagy and Apoptosis Activation.

  • Lin Qi‎ et al.
  • PloS one‎
  • 2015‎

Impairments in mitochondrial energy metabolism are thought to be involved in many neurodegenerative diseases. The mitochondrial inhibitor 3-nitropropionic acid (3-NP) induces striatal pathology mimicking neurodegeneration in vivo. Previous studies showed that 3-NP also triggered autophagy activation and apoptosis. In this study, we focused on the high-mobility group box 1 (HMGB1) protein, which is important in oxidative stress signaling as well as in autophagy and apoptosis, to explore whether the mechanisms of autophagy and apoptosis in neurodegenerative diseases are associated with metabolic impairment. To elucidate the role of HMGB1 in striatal degeneration, we investigated the impact of HMGB1 on autophagy activation and cell death induced by 3-NP. We intoxicated rat striata with 3-NP by stereotaxic injection and analyzed changes in expression HMGB1, proapoptotic proteins caspase-3 and phospho-c-Jun amino-terminal kinases (p-JNK). 3-NP-induced elevations in p-JNK, cleaved caspase-3, and autophagic marker LC3-II as well as reduction in SQSTM1 (p62), were significantly reduced by the HMGB1 inhibitor glycyrrhizin. Glycyrrhizin also significantly inhibited 3-NP-induced striatal damage. Neuronal death was replicated by exposing primary striatal neurons in culture to 3-NP. It was clear that HMGB1 was important for basal autophagy which was shown by rescue of cells through HMGB1 targeting shRNA approach.3-NP also induced the expression of HMGB1, p-JNK, and LC3-II in striatal neurons, and p-JNK expression was significantly reduced by shRNA knockdown of HMGB1, an effect that was reversed by exogenously increased expression of HMGB1. These results suggest that HMGB1 plays important roles in signaling for both autophagy and apoptosis in neurodegeneration induced by mitochondrial dysfunction.


Efficacy of adding bevacizumab in the first-line chemotherapy of metastatic colorectal cancer: evidence from seven randomized clinical trials.

  • Yan-Xian Chen‎ et al.
  • Gastroenterology research and practice‎
  • 2014‎

Background. Efficacy of adding bevacizumab in first-line chemotherapy of metastatic colorectal cancer (mCRC) has been controversial. The aim of this study is to gather current data to analyze efficacy of adding bevacizumab to the most used combination first-line chemotherapy in mCRC, based on the 2012 meta-analysis reported by Macedo et al.  Methods. Medline, EMBASE and Cochrane library, meeting presentations and abstracts were searched. Eligible studies were randomized controlled trials (RCTs) which evaluated first-line chemotherapy with or without bevacizumab in mCRC. The extracting data were included and examined in the meta-analysis according to the type of chemotherapy regimen. Results. Seven trials, totaling 3436 patients, were analyzed. Compared with first-line chemothery alone, the adding of bevacizumab did not show clinical benefit for OS both in first-line therapy and the most used combination chemotherapy (HR = 0.89; 95% CI = 0.78-1.02; P = 0.08; HR = 0.93; 95% CI = 0.83-1.05; P = 0.24). In contrast with OS, the addition of bevacizumab resulted in significant improvement for PFS (HR = 0.68; 95% CI = 0.59-0.78; P < 0.00001). Moreover, it also demonstrated statistical benefit for PFS in the most used combination first-line chemotherapy (HR = 0.84; 95% CI = 0.75-0.94; P = 0.002). And the subgroup analysis indicated only capacitabine-based regimens were beneficial. Conclusions. This meta-analysis shows that the addition of bevacizumab to FOLFOX/FOLFIRI/XELOX regimens might not be beneficial in terms of OS. Benefit has been seen when PFS has been taken into account. In subgroup analysis, benefit adding bevacizumab has been seen when capecitabine-based regimens are used. Further studies are warranted to explore the combination with bevacizumab.


Empirical and computational design of iron-sulfur cluster proteins.

  • Joanna Grzyb‎ et al.
  • Biochimica et biophysica acta‎
  • 2012‎

Here, we compare two approaches of protein design. A computational approach was used in the design of the coiled-coil iron-sulfur protein, CCIS, as a four helix bundle binding an iron-sulfur cluster within its hydrophobic core. An empirical approach was used for designing the redox-chain maquette, RCM as a four-helix bundle assembling iron-sulfur clusters within loops and one heme in the middle of its hydrophobic core. We demonstrate that both ways of design yielded the desired proteins in terms of secondary structure and cofactors assembly. Both approaches, however, still have much to improve in predicting conformational changes in the presence of bound cofactors, controlling oligomerization tendency and stabilizing the bound iron-sulfur clusters in the reduced state. Lessons from both ways of design and future directions of development are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats.

  • Linyi Li‎ et al.
  • PloS one‎
  • 2015‎

Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat oxidation through the activation of SIRT1 and AMPK signaling.


Effects of an oral allosteric AKT inhibitor (MK-2206) on human nasopharyngeal cancer in vitro and in vivo.

  • Yuan-Yuan Zhao‎ et al.
  • Drug design, development and therapy‎
  • 2014‎

Protein kinase B (AKT) signaling frequently is deregulated in human cancers and plays an important role in nasopharyngeal carcinoma (NPC). This preclinical study investigated the effect of MK-2206, a potent allosteric AKT inhibitor, on human NPC cells in vitro and in vivo.


Baicalin Exerts Anti-Airway Inflammation and Anti-Remodelling Effects in Severe Stage Rat Model of Chronic Obstructive Pulmonary Disease.

  • Genfa Wang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic. Current approaches are disappointing due to limited improvement of the disease development. The present study established 36-week side stream cigarette smoke induced rat model of COPD with advanced stage feature and evaluted the effects of baicalin on the model. Fifty-four Sprague-Dawley rats were randomly divided into six groups including room air control, cigarette smoke exposure, baicalin (40 mg/kg, 80 mg/kg, and 160 mg/kg), and budesonide used as a positive control. Rats were exposed to cigarette smoke from 3R4F research cigarettes. Pulmonary function was evaluated and pathological changes were also observed. Cytokine level related to airway inflammation and remodelling in blood serum, bronchoalveolar lavage fluid, and lung tissue was determined. Blood gases and HPA axis function were also examined, and antioxidant levels were quantified. Results showed that, after treatment with baicalin, lung function was improved and histopathological changes were ameliorated. Baicalin also regulated proinflammatory and anti-inflammatory balance and also airway remodelling and anti-airway remodelling factors in blood serum, bronchoalveolar lavage fluid, and lung tissue. Antioxidant capacity was also increased after treatment with baicalin in COPD rat model. HPA axis function was improved in baicalin treated groups as compared to model group. Therefore, baicalin exerts lung function protection, proinflammatory and anti-inflammatory cytokine regulation, anti-airway remodelling, and antioxidant role in long term CS induced COPD model.


Application of enhanced electronegative multimodal chromatography as the primary capture step for immunoglobulin G purification.

  • Yanli Wang‎ et al.
  • AMB Express‎
  • 2018‎

In recent studies, electronegative multimodal chromatography with Eshmuno HCX was demonstrated to be a highly promising recovery step for direct immunoglobulin G (IgG) capture from undiluted cell culture fluid. In this study, the binding properties of HCX to IgG at different pH/salt combinations were systematically studied, and its purification performance was significantly enhanced by lowering the washing pH and conductivity after high capacity binding of IgG under its optimal conditions. A single polishing step gave an end-product with non-histone host cell protein (nh-HCP) below 1 ppm, DNA less than 1 ppb, which aggregates less than 0.5% and an overall IgG recovery of 86.2%. The whole non-affinity chromatography based two-column-step process supports direct feed loading without buffer adjustment, thus extraordinarily boosting the overall productivity and cost-savings.


Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling.

  • Fei Xu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Accumulating evidence suggests that M2-polarized tumor-associated macrophages (TAMs) play an important role in cancer progression and metastasis, making M2 polarization of TAMs an ever more appealing target for therapeutic intervention. Astragaloside IV (AS-IV), a saponin component isolated from Astragali radix, has been reported to inhibit the invasion and metastasis of lung cancer, but its effects on TAMs during lung cancer progression have not been investigated.


Effectiveness of Antibody-Drug Conjugate (ADC): Results of In Vitro and In Vivo Studies.

  • Xiuhua Kang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Human lung cancer is still the leading cause of cancer-related mortality around the world, although a variety of new therapies have been used in the treatment of this disease. Antibody-drug conjugate (ADC) has revolutionized the field of cancer therapy in recent decades. Unlike traditional chemotherapy that damages the healthy cells, ADC first utilizes monoclonal antibodies to bind tumor-specific antigen targets and then deliver a highly potent cytotoxic agent to kill tumor cells. Thus, ADC can benefit cancer patients because this drug has less severe adverse effects. MATERIAL AND METHODS One type of ADC for non-small cell lung cancer (NSCLC) was designed in this study: Erbitux-vc-PAB-MMAE. It is a mouse/human chimeric monoclonal antibody, Erbitux, conjugating to the tubulin inhibitor auristatin. The efficacy of ADC was investigated through in vitro and in vivo studies. RESULTS Our in vitro study demonstrated that Erbitux-vc-PAB-MMAE could effectively inhibit proliferation of human lung cancer A549 cells, and arrested cell cycle at G2/M phase. In a mouse xenograft model, the results indicated that Erbitux-vc-PAB-MMAE could be exactly delivered to tumor tissues, and effectively inhibited tumor growth via promoting apoptosis of cancer cells. CONCLUSIONS The antibody portion of an ADC drug (Erbitux) was used as a vector to bring the effector molecule (tubulin inhibitor MMAE) to the targeted tumor tissue. This antibody-drug conjugate can exert a strong anti-tumor effect.


Clinical value of circulating ESR1 mutations for patients with metastatic breast cancer: a meta-analysis.

  • Kai Zhang‎ et al.
  • Cancer management and research‎
  • 2018‎

The clinical implication of plasma ESR1 mutations in the estrogen receptor (ER)-positive metastatic breast cancer (MBC) patients who had progressed after prior aromatase inhibitor (AI)-based therapy remains controversial. We conducted the first meta-analysis to investigate the prognostic significance and predictive role of plasma ESR1 mutations in MBC patients with prior exposure to AI therapy.


Irinotecan-platinum combination therapy for previously untreated extensive-stage small cell lung cancer patients: a meta-analysis.

  • Fei Xu‎ et al.
  • BMC cancer‎
  • 2018‎

There is still a debate regarding whether regimens combining irinotecan with platinum could replace regimens combining etoposide with platinum, as first-line chemotherapy for extensive-stage small cell lung cancer (ES-SCLC). We performed a meta-analysis to compare these regimens as first-line chemotherapy for ES-SCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: