Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction.

  • Bárbara Oujo‎ et al.
  • PloS one‎
  • 2014‎

Transforming growth factor-β (TGF-β) plays a pivotal role in renal fibrosis. Endoglin, a 180 KDa membrane glycoprotein, is a TGF-β co-receptor overexpressed in several models of chronic kidney disease, but its function in renal fibrosis remains uncertain. Two membrane isoforms generated by alternative splicing have been described, L-Endoglin (long) and S-Endoglin (short) that differ from each other in their cytoplasmic tails, being L-Endoglin the most abundant isoform. The aim of this study was to assess the effect of L-Endoglin overexpression in renal tubulo-interstitial fibrosis. For this purpose, a transgenic mouse which ubiquitously overexpresses human L-Endoglin (L-ENG+) was generated and unilateral ureteral obstruction (UUO) was performed in L-ENG+ mice and their wild type (WT) littermates. Obstructed kidneys from L-ENG+ mice showed higher amounts of type I collagen and fibronectin but similar levels of α-smooth muscle actin (α-SMA) than obstructed kidneys from WT mice. Smad1 and Smad3 phosphorylation were significantly higher in obstructed kidneys from L-ENG+ than in WT mice. Our results suggest that the higher increase of renal fibrosis observed in L-ENG+ mice is not due to a major abundance of myofibroblasts, as similar levels of α-SMA were observed in both L-ENG+ and WT mice, but to the higher collagen and fibronectin synthesis by these fibroblasts. Furthermore, in vivo L-Endoglin overexpression potentiates Smad1 and Smad3 pathways and this effect is associated with higher renal fibrosis development.


Endoglin regulates mural cell adhesion in the circulatory system.

  • Elisa Rossi‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2016‎

The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.


Human endoglin as a potential new partner involved in platelet-endothelium interactions.

  • Elisa Rossi‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2018‎

Complex interactions between platelets and activated endothelium occur during the thrombo-inflammatory reaction at sites of vascular injuries and during vascular hemostasis. The endothelial receptor endoglin is involved in inflammation through integrin-mediated leukocyte adhesion and transmigration; and heterozygous mutations in the endoglin gene cause hereditary hemorrhagic telangiectasia type 1. This vascular disease is characterized by a bleeding tendency that is postulated to be a consequence of telangiectasia fragility rather than a platelet defect, since platelets display normal functions in vitro in this condition. Here, we hypothesize that endoglin may act as an adhesion molecule involved in the interaction between endothelial cells and platelets through integrin recognition. We find that the extracellular domain of human endoglin promotes specific platelet adhesion under static conditions and confers resistance of adherent platelets to detachment upon exposure to flow. Also, platelets adhere to confluent endothelial cells in an endoglin-mediated process. Remarkably, Chinese hamster ovary cells ectopically expressing the human αIIbβ3 integrin acquire the capacity to adhere to myoblast transfectants expressing human endoglin, whereas platelets from Glanzmann's thrombasthenia patients lacking the αIIbβ3 integrin are defective for endoglin-dependent adhesion to endothelial cells. Furthermore, the bleeding time, but not the prothrombin time, is significantly prolonged in endoglin-haplodeficient (Eng +/-) mice compared to Eng +/+ animals. These results suggest a new role for endoglin in αIIbβ3 integrin-mediated adhesion of platelets to the endothelium, and may provide a better understanding on the basic cellular mechanisms involved in hemostasis and thrombo-inflammatory events.


Generation of a Soluble Form of Human Endoglin Fused to Green Fluorescent Protein.

  • Lidia Ruiz-Llorente‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Endoglin (Eng, CD105) is a type I membrane glycoprotein that functions in endothelial cells as an auxiliary receptor for transforming growth factor β (TGF-β)/bone morphogenetic protein (BMP) family members and as an integrin ligand, modulating the vascular pathophysiology. Besides the membrane-bound endoglin, there is a soluble form of endoglin (sEng) that can be generated by the action of the matrix metalloproteinase (MMP)-14 or -12 on the juxtamembrane region of its ectodomain. High levels of sEng have been reported in patients with preeclampsia, hypercholesterolemia, atherosclerosis and cancer. In addition, sEng is a marker of cardiovascular damage in patients with hypertension and diabetes, plays a pathogenic role in preeclampsia, and inhibits angiogenesis and tumor proliferation, migration, and invasion in cancer. However, the mechanisms of action of sEng have not yet been elucidated, and new tools and experimental approaches are necessary to advance in this field. To this end, we aimed to obtain a fluorescent form of sEng as a new tool for biological imaging. Thus, we cloned the extracellular domain of endoglin in the pEGFP-N1 plasmid to generate a fusion protein with green fluorescent protein (GFP), giving rise to pEGFP-N1/Eng.EC. The recombinant fusion protein was characterized by transient and stable transfections in CHO-K1 cells using fluorescence microscopy, SDS-PAGE, immunodetection, and ELISA techniques. Upon transfection with pEGFP-N1/Eng.EC, fluorescence was readily detected in cells, indicating that the GFP contained in the recombinant protein was properly folded into the cytosol. Furthermore, as evidenced by Western blot analysis, the secreted fusion protein yielded the expected molecular mass and displayed a specific fluorescent signal. The fusion protein was also able to bind to BMP9 and BMP10 in vitro. Therefore, the construct described here could be used as a tool for functional in vitro studies of the extracellular domain of endoglin.


Heterozygous deficiency of endoglin decreases insulin and hepatic triglyceride levels during high fat diet.

  • Daniel Beiroa‎ et al.
  • PloS one‎
  • 2013‎

Endoglin is a transmembrane auxiliary receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells. It plays a wide range of physiological roles but its importance on energy balance or insulin sensitivity has been unexplored. Endoglin deficient mice die during midgestation due to cardiovascular defects. Here we report for first time that heterozygous endoglin deficiency in mice decreases high fat diet-induced hepatic triglyceride content and insulin levels. Importantly, these effects are independent of changes in body weight or adiposity. At molecular level, we failed to detect relevant changes in the insulin signalling pathway at basal levels in liver, muscle or adipose tissues that could explain the insulin-dependent effect. However, we found decreased triglyceride content in the liver of endoglin heterozygous mice fed a high fat diet in comparison to their wild type littermates. Overall, our findings indicate that endoglin is a potentially important physiological mediator of insulin levels and hepatic lipid metabolism.


Characterization of chicken endoglin, a member of the zona pellucida family of proteins, and its tissue expression.

  • Elisa Rossi‎ et al.
  • Gene‎
  • 2012‎

Endoglin is a TGF-β co-receptor expressed in endothelial cells, where it plays a crucial role in angiogenesis, cardiovascular development and vascular remodeling. In humans, mutations in the endoglin gene give rise to Hereditary Hemorrhagic Telangiectasia type 1 (HHT1), an autosomal dominant disorder associated with vascular lesions in skin, mucosa and internal organs. So far, endoglin cDNA has been sequenced in several species from mammals, amphibians and birds. While in mammals the characterization of endoglin protein expression and function is well documented, little is known about the protein homologue in birds. In silico analysis by multiple sequences alignment showed a low homology score of 30-33 between the full length chicken endoglin protein and several mammalian homologues. However, a high homology score (80-85) was observed with the cytoplasmic and transmembrane regions and the overall structure of the zona pellucida (ZP) and orphan domains of the extracellular region appear to be conserved. Transient expression of chicken endoglin allowed the identification of a 180-kDa disulfide linked homodimer similar to the mammalian homologues. To further characterize its tissue expression, the novel specific monoclonal antibody (mAb) 7H5A8 was generated against chicken endoglin transfectant cells. The mAb 7H5A8 specifically recognized chicken endoglin by western blot, immunoprecipitation, immunofluorescence flow cytometry as well as immunofluorescence microscopy assays and displayed a positive staining of the endothelium in veins and arteries from frozen tissue sections of lung and bursa of Fabricius. These results may help to further understand the endoglin expression in vertebrates.


5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia.

  • Kristy Damjanovich‎ et al.
  • Orphanet journal of rare diseases‎
  • 2011‎

Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by epistaxis, arteriovenous malformations, and telangiectases. The majority of the patients have a mutation in the coding region of the activin A receptor type II-like 1 (ACVRL1) or Endoglin (ENG) gene. However, in approximately 15% of cases, sequencing analysis and deletion/duplication testing fail to identify mutations in the coding regions of these genes. Knowing its vital role in transcription and translation control, we were prompted to investigate the 5'untranslated region (UTR) of ENG.


Functional analysis of a novel ENG variant in a patient with hereditary hemorrhagic telangiectasia (HHT) identifies a new Sp1 binding-site.

  • Sara Plumitallo‎ et al.
  • Gene‎
  • 2018‎

Hereditary Hemorrhagic Telangiectasia (HHT) is a rare disease, with an autosomal dominant inheritance and a worldwide incidence of about 1: 5000 individuals. In >80% of patients, HHT is caused by mutations in either ENG or ACVRL1, which code for ENDOGLIN and Activin A Receptor Type II-Like Kinase 1 (ALK1), belonging to the TGF-β/BMP signalling pathway. Typical HHT clinical features are mucocutaneous telangiectases, arteriovenous malformations, spontaneous and recurrent epistaxis, as well as gastrointestinal bleedings. An additional, but less frequent, clinical manifestation in some HHT patients is the presence of Pulmonary Arterial Hypertension (PAH). The aim of this work is to describe the functional role of a novel ENG intronic variant found in a patient affected by both HHT and PAH, in order to assess whether it has a pathogenic role. We proved that the variant lies in a novel binding-site for the transcription factor Sp1, known to be involved in the regulation of ENG and ACVRL1 transcription. We confirmed a pathogenic role for this intronic variant, as it significantly reduces ENG transcription by affecting this novel Sp1 binding-site.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: