Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 116 papers

Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk.

  • Kyle M Walsh‎ et al.
  • Oncotarget‎
  • 2015‎

Telomere maintenance has emerged as an important molecular feature with impacts on adult glioma susceptibility and prognosis. Whether longer or shorter leukocyte telomere length (LTL) is associated with glioma risk remains elusive and is often confounded by the effects of age and patient treatment. We sought to determine if genotypically-estimated LTL is associated with glioma risk and if inherited single nucleotide polymorphisms (SNPs) that are associated with LTL are glioma risk factors. Using a Mendelian randomization approach, we assessed differences in genotypically-estimated relative LTL in two independent glioma case-control datasets from the UCSF Adult Glioma Study (652 patients and 3735 controls) and The Cancer Genome Atlas (478 non-overlapping patients and 2559 controls). LTL estimates were based on a weighted linear combination of subject genotype at eight SNPs, previously associated with LTL in the ENGAGE Consortium Telomere Project. Mean estimated LTL was 31bp (5.7%) longer in glioma patients than controls in discovery analyses (P = 7.82x10-8) and 27bp (5.0%) longer in glioma patients than controls in replication analyses (1.48x10-3). Glioma risk increased monotonically with each increasing septile of LTL (O.R.=1.12; P = 3.83x10-12). Four LTL-associated SNPs were significantly associated with glioma risk in pooled analyses, including those in the telomerase component genes TERC (O.R.=1.14; 95% C.I.=1.03-1.28) and TERT (O.R.=1.39; 95% C.I.=1.27-1.52), and those in the CST complex genes OBFC1 (O.R.=1.18; 95% C.I.=1.05-1.33) and CTC1 (O.R.=1.14; 95% C.I.=1.02-1.28). Future work is needed to characterize the role of the CST complex in gliomagenesis and further elucidate the complex balance between ageing, telomere length, and molecular carcinogenesis.


Reference-free deconvolution of DNA methylation data and mediation by cell composition effects.

  • E Andres Houseman‎ et al.
  • BMC bioinformatics‎
  • 2016‎

Recent interest in reference-free deconvolution of DNA methylation data has led to several supervised methods, but these methods do not easily permit the interpretation of underlying cell types.


Gene by Environment Investigation of Incident Lung Cancer Risk in African-Americans.

  • Sean P David‎ et al.
  • EBioMedicine‎
  • 2016‎

Genome-wide association studies have identified polymorphisms linked to both smoking exposure and risk of lung cancer. The degree to which lung cancer risk is driven by increased smoking, genetics, or gene-environment interactions is not well understood.


Alveolar epithelial cell therapy with human cord blood-derived hematopoietic progenitor cells.

  • Monique E De Paepe‎ et al.
  • The American journal of pathology‎
  • 2011‎

The role of umbilical cord blood (CB)-derived stem cell therapy in neonatal lung injury remains undetermined. We investigated the capacity of human CB-derived CD34(+) hematopoietic progenitor cells to regenerate injured alveolar epithelium in newborn mice. Double-transgenic mice with doxycycline (Dox)-dependent lung-specific Fas ligand (FasL) overexpression, treated with Dox between embryonal day 15 and postnatal day 3, served as a model of neonatal lung injury. Single-transgenic non-Dox-responsive littermates were controls. CD34(+) cells (1 × 10(5) to 5 × 10(5)) were administered at postnatal day 5 by intranasal inoculation. Engraftment, respiratory epithelial differentiation, proliferation, and cell fusion were studied at 8 weeks after inoculation. Engrafted cells were readily detected in all recipients and showed a higher incidence of surfactant immunoreactivity and proliferative activity in FasL-overexpressing animals compared with non-FasL-injured littermates. Cord blood-derived cells surrounding surfactant-immunoreactive type II-like cells frequently showed a transitional phenotype between type II and type I cells and/or type I cell-specific podoplanin immunoreactivity. Lack of nuclear colocalization of human and murine genomic material suggested the absence of fusion. In conclusion, human CB-derived CD34(+) cells are capable of long-term pulmonary engraftment, replication, clonal expansion, and reconstitution of injured respiratory epithelium by fusion-independent mechanisms. Cord blood-derived surfactant-positive epithelial cells appear to act as progenitors of the distal respiratory unit, analogous to resident type II cells. Graft proliferation and alveolar epithelial differentiation are promoted by lung injury.


Prenatal exposure to maternal depression and anxiety on imprinted gene expression in placenta and infant neurodevelopment and growth.

  • Julia F Litzky‎ et al.
  • Pediatric research‎
  • 2018‎

BackgroundDepression and/or anxiety during pregnancy have been associated with impaired fetal growth and neurodevelopment. Because placental imprinted genes play a central role in fetal development and respond to environmental stressors, we hypothesized that imprinted gene expression would be affected by prenatal depression and anxiety.MethodsPlacental gene expression was compared between mothers with prenatal depression and/or anxiety/obsessive compulsive disorder/panic and control mothers without psychiatric history (n=458) in the Rhode Island Child Health Study.ResultsTwenty-nine genes were identified as being significantly differentially expressed between placentae from infants of mothers with both depression and anxiety (n=54), with depression (n=89), or who took perinatal psychiatric medications (n=29) and control mother/infant pairs, with most genes having decreased expression in the stressed group. Among placentae from infants of mothers with depression, we found no differences in expression by medication use, indicating that our results are related to the stressor rather than the treatments. We did not find any relationship between the stress-associated gene expression and neonatal neurodevelopment, as measured using the Neonatal Intensive Care Unit Network Neurobehavioral Scale.ConclusionsThis variation in expression may be part of an adaptive mechanism by which the placenta buffers the infant from the effects of maternal stress.


Pan-Cancer Analysis Reveals Differential Susceptibility of Bidirectional Gene Promoters to DNA Methylation, Somatic Mutations, and Copy Number Alterations.

  • Jeffrey A Thompson‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Bidirectional gene promoters affect the transcription of two genes, leading to the hypothesis that they should exhibit protection against genetic or epigenetic changes in cancer. Therefore, they provide an excellent opportunity to learn about promoter susceptibility to somatic alteration in tumors. We tested this hypothesis using data from genome-scale DNA methylation (14 cancer types), simple somatic mutation (10 cancer types), and copy number variation profiling (14 cancer types). For DNA methylation, the difference in rank differential methylation between tumor and tumor-adjacent normal matched samples based on promoter type was tested by the Wilcoxon rank sum test. Logistic regression was used to compare differences in simple somatic mutations. For copy number alteration, a mixed effects logistic regression model was used. The change in methylation between non-diseased tissues and their tumor counterparts was significantly greater in single compared to bidirectional promoters across all 14 cancer types examined. Similarly, the extent of copy number alteration was greater in single gene compared to bidirectional promoters for all 14 cancer types. Furthermore, among 10 cancer types with available simple somatic mutation data, bidirectional promoters were slightly more susceptible. These results suggest that selective pressures related with specific functional impacts during carcinogenesis drive the susceptibility of promoter regions to somatic alteration.


HE4 (WFDC2) gene overexpression promotes ovarian tumor growth.

  • Richard G Moore‎ et al.
  • Scientific reports‎
  • 2014‎

Selective overexpression of Human epididymal secretory protein E4 (HE4) points to a role in ovarian cancer tumorigenesis but little is known about the role the HE4 gene or the gene product plays. Here we show that elevated HE4 serum levels correlate with chemoresistance and decreased survival rates in EOC patients. HE4 overexpression promoted xenograft tumor growth and chemoresistance against cisplatin in an animal model resulting in reduced survival rates. HE4 displayed responses to tumor microenvironment constituents and presented increased expression as well as nuclear translocation upon EGF, VEGF and Insulin treatment and nucleolar localization with Insulin treatment. HE4 interacts with EGFR, IGF1R, and transcription factor HIF1α. Constructs of antisense phosphorothio-oligonucleotides targeting HE4 arrested tumor growth in nude mice. Collectively these findings implicate increased HE4 expression as a molecular factor in ovarian cancer tumorigenesis. Selective targeting directed towards the HE4 protein demonstrates therapeutic benefits for the treatment of ovarian cancer.


Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life.

  • Akhilesh Kaushal‎ et al.
  • Environmental health : a global access science source‎
  • 2017‎

In utero arsenic exposure may alter fetal developmental programming by altering DNA methylation, which may result in a higher risk of disease in later life. We evaluated the association between in utero arsenic exposure and DNA methylation (DNAm) in cord blood and its influence in later life.


Maternal smoking during pregnancy is associated with mitochondrial DNA methylation.

  • David A Armstrong‎ et al.
  • Environmental epigenetics‎
  • 2016‎

Maternal smoking during pregnancy (MSDP) has detrimental effects on fetal development and on the health of the offspring into adulthood. Energy homeostasis through ATP production via the mitochondria (mt) plays a key role during pregnancy. This study aimed to determine if MSDP resulted in differences in DNA methylation to the placental mitochondrial chromosome at the transcription and replication control region, the D-Loop, and if these differences were also present in an alternate neonatal tissue (foreskin) in an independent birth cohort. We investigated mtDNA methylation by bisulfite-pyrosequencing in two sections of the D-Loop control region and in long interspersed nuclear element-1 (LINE-1) genomic sequences in placenta from 96 mother-newborn pairs that were enrolled in a Rhode Island birth cohort along with foreskin samples from 62 infants from a Kentucky birth cohort. In both placenta and foreskin, mtDNA methylation in the light chain D-Loop region 1 was positively associated with MSDP in placenta (difference+2.73%) (P=0.001) and foreskin (difference+1.22%) (P=0.08). Additionally, in foreskin, a second segment of the D-Loop-heavy chain region 1 showed a small but significant change in methylation with MSDP (+0.4%, P=0.04). No methylation changes were noted in either tissue at the LINE-1 repetitive element. We identified a similar pattern of epigenetic effect to mitochondria arising in cells from different primordial lineages and in different populations, associated with MSDP. These robust and consistent results build evidence that MSDP may impact mt D-Loop methylation, as one mechanism through which this exposure affects newborn health.


In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta.

  • Charlotte S Wilhelm-Benartzi‎ et al.
  • Environmental health perspectives‎
  • 2012‎

Fetal programming describes the theory linking environmental conditions during embryonic and fetal development with risk of diseases later in life. Environmental insults in utero may lead to changes in epigenetic mechanisms potentially affecting fetal development.


SNP association mapping across the extended major histocompatibility complex and risk of B-cell precursor acute lymphoblastic leukemia in children.

  • Kevin Y Urayama‎ et al.
  • PloS one‎
  • 2013‎

The extended major histocompatibility complex (xMHC) is the most gene-dense region of the genome and harbors a disproportionately large number of genes involved in immune function. The postulated role of infection in the causation of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) suggests that the xMHC may make an important contribution to the risk of this disease. We conducted association mapping across an approximately 4 megabase region of the xMHC using a validated panel of single nucleotide polymorphisms (SNPs) in childhood BCP-ALL cases (n=567) enrolled in the Northern California Childhood Leukemia Study (NCCLS) compared with population controls (n=892). Logistic regression analyses of 1,145 SNPs, adjusted for age, sex, and Hispanic ethnicity indicated potential associations between several SNPs and childhood BCP-ALL. After accounting for multiple comparisons, one of these included a statistically significant increased risk associated with rs9296068 (OR=1.40, 95% CI=1.19-1.66, corrected p=0.036), located in proximity to HLA-DOA. Sliding window haplotype analysis identified an additional locus located in the extended class I region in proximity to TRIM27 tagged by a haplotype comprising rs1237485, rs3118361, and rs2032502 (corrected global p=0.046). Our findings suggest that susceptibility to childhood BCP-ALL is influenced by genetic variation within the xMHC and indicate at least two important regions for future evaluation.


Variation in xenobiotic transport and metabolism genes, household chemical exposures, and risk of childhood acute lymphoblastic leukemia.

  • Anand P Chokkalingam‎ et al.
  • Cancer causes & control : CCC‎
  • 2012‎

Recent studies suggest that environmental exposures to pesticides, tobacco, and other xenobiotic chemicals may increase risk of childhood acute lymphoblastic leukemia (ALL). We sought to evaluate the role of genes involved in xenobiotic transport and metabolism in childhood ALL risk, both alone and in conjunction with household chemical exposures previously found to be associated with childhood ALL risk.


Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero.

  • Devin C Koestler‎ et al.
  • Environmental health perspectives‎
  • 2013‎

There is increasing epidemiologic evidence that arsenic exposure in utero, even at low levels found throughout much of the world, is associated with adverse reproductive outcomes and may contribute to long-term health effects. Animal models, in vitro studies, and human cancer data suggest that arsenic may induce epigenetic alterations, specifically by altering patterns of DNA methylation.


Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation.

  • Bijesh K Biswal‎ et al.
  • PloS one‎
  • 2012‎

Human embryonal carcinoma (EC) cells are the stem cells of nonseminoma testicular germ cells tumors (TGCTs) and share remarkable similarities to human embryonic stem (ES) cells. In prior work we found that EC cells are hypersensitive to low nanomolar doses of 5-aza deoxycytidine (5-aza) and that this hypersensitivity partially depended on unusually high levels of the DNA methyltransferase, DNMT3B. We show here that low-dose 5-aza treatment results in DNA damage and induction of p53 in NT2/D1 cells. In addition, low-dose 5-aza results in global and gene specific promoter DNA hypomethylation. Low-dose 5-aza induces a p53 transcriptional signature distinct from that induced with cisplatin in NT2/D1 cells and also uniquely downregulates genes associated with pluripotency including NANOG, SOX2, GDF3 and Myc target genes. Changes in the p53 and pluripotency signatures with 5-aza were to a large extent dependent on high levels of DNMT3B. In contrast to the majority of p53 target genes upregulated by 5-aza that did not show DNA hypomethylation, several other genes induced with 5-aza had corresponding decreases in promoter methylation. These genes include RIN1, SOX15, GPER, and TLR4 and are novel candidate tumors suppressors in TGCTs. Our studies suggest that the hypersensitivity of NT2/D1 cells to low-dose 5-aza is multifactorial and involves the combined activation of p53 targets, repression of pluripotency genes, and activation of genes repressed by DNA methylation. Low-dose 5-aza therapy may be a general strategy to treat those tumors that are sustained by cells with embryonic stem-like properties.GEO NUMBER FOR THE MICROARRAY DATA: GSE42647.


SNPLogic: an interactive single nucleotide polymorphism selection, annotation, and prioritization system.

  • Alexander R Pico‎ et al.
  • Nucleic acids research‎
  • 2009‎

SNPLogic (http://www.snplogic.org) brings together single nucleotide polymorphism (SNP) information from numerous sources to provide a comprehensive SNP selection, annotation and prioritization system for design and analysis of genotyping projects. SNPLogic integrates information about the genetic context of SNPs (gene, chromosomal region, functional location, haplotypes tags and overlap with transcription factor binding sites, splicing sites, miRNAs and evolutionarily conserved regions), genotypic data (allele frequencies per population and validation method), coverage of commercial arrays (ParAllele, Affymetrix and Illumina), functional predictions (modeled on structure and sequence) and connections or established associations (biological pathways, gene ontology terms and OMIM disease terms). The SNPLogic web interface facilitates construction and annotation of user-defined SNP lists that can be saved, shared and exported. Thus, SNPLogic can be used to identify and prioritize candidate SNPs, assess custom and commercial arrays panels and annotate new SNP data with publicly available information. We have found integration of SNP annotation in the context of pathway information and functional prediction scores to be a powerful approach to the analysis and interpretation of SNP-disease association data.


Genome-wide characterization of cytosine-specific 5-hydroxymethylation in normal breast tissue.

  • Owen M Wilkins‎ et al.
  • Epigenetics‎
  • 2020‎

Despite recent evidence that 5-hydroxymethylcytosine (5hmC) possesses roles in gene regulation distinct from 5-methylcytosine (5mC), relatively little is known regarding the functions of 5hmC in mammalian tissues. To address this issue, we utilized an approach combining both paired bisulfite (BS) and oxidative bisulfite (oxBS) DNA treatment, to resolve genome-wide patterns of 5hmC and 5mC in normal breast tissue from disease-free women. Although less abundant than 5mC, 5hmC was differentially distributed, and consistently enriched among breast-specific enhancers and transcriptionally active chromatin. In contrast, regulatory regions associated with transcriptional inactivity, such as heterochromatin and repressed Polycomb regions, were relatively depleted of 5hmC. Gene regions containing abundant 5hmC were significantly associated with lactate oxidation, immune cell function, and prolactin signaling pathways. Furthermore, genes containing abundant 5hmC were enriched among those actively transcribed in normal breast tissue. Finally, in independent data sets, normal breast tissue 5hmC was significantly enriched among CpG loci demonstrated to have altered methylation in pre-invasive breast cancer and invasive breast tumors. Primarily, our findings identify genomic loci containing abundant 5hmC in breast tissues and provide a genome-wide map of nucleotide-level 5hmC in normal breast tissue. Additionally, these data suggest 5hmC may participate in gene regulatory programs that are dysregulated during breast-related carcinogenesis.


Placental Expression of Imprinted Genes, Overall and in Sex-Specific Patterns, Associated with Placental Cadmium Concentrations and Birth Size.

  • Todd M Everson‎ et al.
  • Environmental health perspectives‎
  • 2019‎

Prenatal cadmium (Cd) exposure has been recognized to restrict growth, and male and female fetuses may have differential susceptibility to the developmental toxicity of Cd. Imprinted genes, which exhibit monoallelic expression based on parent of origin, are highly expressed in placental tissues. The function of these genes is particularly critical to fetal growth and development, and some are expressed in sex-specific patterns.


Environmental exposure to polybrominated biphenyl (PBB) associates with an increased rate of biological aging.

  • Sarah W Curtis‎ et al.
  • Aging‎
  • 2019‎

Advanced age increases risk for cancer, cardiovascular disease, and all-cause mortality. However, people do not age at the same rate, and biological age (frequently measured through DNA methylation) can be older than chronological age. Environmental factors have been associated with the rate of biological aging, but it is not known whether persistent endocrine-disrupting compounds (EDCs) like polybrominated biphenyl (PBB) would associate with age acceleration. Three different epigenetic age acceleration measures (intrinsic, extrinsic, and phenotypic) were calculated from existing epigenetic data in whole blood from a population highly exposed to PBB (N=658). Association between serum PBB concentration and these measures was tested, controlling for sex, lipid levels, and estimated cell type proportions. Higher PBB levels associated with increased age acceleration (intrinsic: β=0.24, 95%CI=0.01-0.46, p = 0.03; extrinsic: β=0.39, 95%CI=0.12-0.65, p = 0.004; and phenotypic: β=0.30, 95%CI=0.05-0.54, p = 0.01). Neither age when exposed to PBB nor sex statistically interacted with PBB to predict age acceleration, but, in stratified analyses, the association between PBB and age acceleration was only in people exposed before finishing puberty and in men. This suggests that EDCs can associate with the biological aging process, and further studies are warranted to investigate other environmental pollutants' effect on aging.


Placental genomics mediates genetic associations with complex health traits and disease.

  • Arjun Bhattacharya‎ et al.
  • Nature communications‎
  • 2022‎

As the master regulator in utero, the placenta is core to the Developmental Origins of Health and Disease (DOHaD) hypothesis but is historically understudied. To identify placental gene-trait associations (GTAs) across the life course, we perform distal mediator-enriched transcriptome-wide association studies (TWAS) for 40 traits, integrating placental multi-omics from the Extremely Low Gestational Age Newborn Study. At [Formula: see text], we detect 248 GTAs, mostly for neonatal and metabolic traits, across 176 genes, enriched for cell growth and immunological pathways. In aggregate, genetic effects mediated by placental expression significantly explain 4 early-life traits but no later-in-life traits. 89 GTAs show significant mediation through distal genetic variants, identifying hypotheses for distal regulation of GTAs. Investigation of one hypothesis in human placenta-derived choriocarcinoma cells reveal that knockdown of mediator gene EPS15 upregulates predicted targets SPATA13 and FAM214A, both associated with waist-hip ratio in TWAS, and multiple genes involved in metabolic pathways. These results suggest profound health impacts of placental genomic regulation in developmental programming across the life course.


Pre-surgery immune profiles of adult glioma patients.

  • Paige M Bracci‎ et al.
  • Journal of neuro-oncology‎
  • 2022‎

Although immunosuppression is a known characteristic of glioma, no previous large studies have reported peripheral blood immune cell profiles prior to patient surgery and chemoradiation. This report describes blood immune cell characteristics and associated variables prior to surgery among typical glioma patients seen at a large University practice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: