Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice.

  • Francisco Rafael Nieto‎ et al.
  • The journal of pain‎
  • 2012‎

Sigma-1 (σ(1)) receptors play a role in different types of pain and in central sensitization mechanisms; however, it is unknown whether they are involved in chemotherapy-induced neuropathic pain. We compared the ability of paclitaxel to induce cold (acetone test) and mechanical (electronic Von Frey test) allodynia in wild-type (WT) and σ(1) receptor knockout (σ(1)-KO) mice. We also tested the effect on paclitaxel-induced painful neuropathy of BD-1063 (16-64 mg/kg, subcutaneously) and S1RA (32-128 mg/kg, subcutaneously), 2 selective σ(1) receptor antagonists that bind to the σ(1) receptor with high affinity and competitively. The responses to cold and mechanical stimuli were similar in WT and σ(1)-KO mice not treated with paclitaxel; however, treatment with paclitaxel (2 mg/kg, intraperitoneally, once per day during 5 consecutive days) produced cold and mechanical allodynia and an increase in spinal cord diphosphorylated extracellular signal-regulated kinase (pERK) in WT but not in σ(1)-KO mice. The administration of BD-1063 or S1RA 30 minutes before each paclitaxel dose prevented the development of cold and mechanical allodynia in WT mice. Moreover, the acute administration of both σ(1) receptor antagonists dose dependently reversed both types of paclitaxel-induced allodynia after they had fully developed. These results suggest that σ(1) receptors play a key role in paclitaxel-induced painful neuropathy.


Pharmacokinetics of multiple doses of co-crystal of tramadol-celecoxib: findings from a four-way randomized open-label phase I clinical trial.

  • Sebastián Videla‎ et al.
  • British journal of clinical pharmacology‎
  • 2018‎

We compared the pharmacokinetic (PK) profiles of co-crystal of tramadol-celecoxib (CTC) vs. each reference product (alone and in open combination) after single (first dose) and multiple dosing.


Assessment of 5-HT(7) Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice.

  • Alex Brenchat‎ et al.
  • Advances in pharmacological sciences‎
  • 2012‎

No study has ever examined the effect of 5-HT(7) receptor agonists on nociception by using 5-HT(7) receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT(7) receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT(7) receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT(7) receptor knockout mice. At these active analgesic doses, none of the three 5-HT(7) receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT(7) receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT(7) receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT(7) receptors. These results also strengthen the idea that the 5-HT(7) receptor plays a role in thermoregulation, but by acting in concert with other receptors.


Phe369(7.38) at human 5-HT(7) receptors confers interspecies selectivity to antagonists and partial agonists.

  • Thibault Varin‎ et al.
  • British journal of pharmacology‎
  • 2010‎

Human and rat 5-HT(7) receptors were studied with a particular emphasis on the molecular interactions involved in ligand binding, searching for an explanation to the interspecies selectivity observed for a set of compounds. We performed affinity studies, molecular modelling and site-directed mutagenesis, with special focus on residue Phe(7.38) of the human 5-HT(7) receptor [Cys(7.38) in rat].


Supraspinal and Peripheral, but Not Intrathecal, σ1R Blockade by S1RA Enhances Morphine Antinociception.

  • Alba Vidal-Torres‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Sigma-1 receptor (σ1R) antagonism increases the effects of morphine on acute nociceptive pain. S1RA (E-52862) is a selective σ1R antagonist widely used to study the role of σ1Rs. S1RA alone exerted antinociceptive effect in the formalin test in rats and increased noradrenaline levels in the spinal cord, thus accounting for its antinociceptive effect. Conversely, while systemic S1RA failed to elicit antinociceptive effect by itself in the tail-flick test in mice, it did potentiate the antinociceptive effect of opioids in this acute pain model. The present study aimed to investigate the site of action and the involvement of spinal noradrenaline on the potentiation of opioid antinociception by S1RA on acute thermal nociception using the tail-flick test in rats. Local administration was performed after intrathecal catheterization or intracerebroventricular and rostroventral medullar (RVM) cannulae implantation. Noradrenaline levels in the spinal cord were evaluated using the concentric microdialysis technique in awake, freely-moving rats. Systemic or supraspinal administration of S1RA alone, while having no effect on antinociception, enhanced the effect of morphine in rats. However, spinal S1RA administration did not potentiate the antinociceptive effect of morphine. Additionally, the peripherally restricted opioid agonist loperamide was devoid of antinociceptive effect but produced antinociception when combined with S1RA. Neurochemical studies revealed that noradrenaline levels in the dorsal horn of the spinal cord were not increased at doses exerting potentiation of the antinociceptive effect of the opioid. In conclusion, the site of action of σ1R for opioid modulation on acute thermal nociception is located at the peripheral and supraspinal levels, and the opioid-potentiating effect is independent of the spinal noradrenaline increase produced by S1RA.


Influence of Pre-Harvest Bagging on the Incidence of Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) and Fruit Quality in Mango.

  • Modesto Del Pino‎ et al.
  • Insects‎
  • 2021‎

Aulacaspis tubercularis Newstead (Hemiptera: Diaspididae) is the main pest of mango, Mangifera indica L., in Spain, causing significant economic losses by aesthetic damage that reduce the commercial value of fruit. Bagging fruit with two commercial bags (a yellow satin paper and a white muslin cloth bag) was evaluated for control of A. tubercularis in two organic mango orchards during the 2020 cropping season in pursuit of the development of a mango IPM program to produce pest-free and residue-free fruits. Results from fruit damage evaluations at harvest showed that bagging significantly reduced pest incidence and fruit damage compared with non-bagged plots. Of the two bags evaluated, white muslin cloth bag provided higher levels of fruit protection from A. tubercularis damage, reducing the non-commercial fruit percentage by up to 93.42%. Fruit quality assessment indicated that weight and size of bagged fruit were significantly higher than the non-bagged. Paper-bagged mangoes showed higher whiteness and yellowness compared to the other treatments. Soluble solids content (ºBrix) was higher in paper-bagged fruit than all other treatment plots. The results from this study indicate that pre-harvest fruit bagging is effective at controlling A. tubercularis and should be integrated into an IPM program for Spanish mango production.


Bispecific sigma-1 receptor antagonism and mu-opioid receptor partial agonism: WLB-73502, an analgesic with improved efficacy and safety profile compared to strong opioids.

  • Alba Vidal-Torres‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2023‎

Opioids are the most effective painkillers, but their benefit-risk balance often hinder their therapeutic use. WLB-73502 is a dual, bispecific compound that binds sigma-1 (S1R) and mu-opioid (MOR) receptors. WLB-73502 is an antagonist at the S1R. It behaved as a partial MOR agonist at the G-protein pathway and produced no/unsignificant β-arrestin-2 recruitment, thus demonstrating low intrinsic efficacy on MOR at both signalling pathways. Despite its partial MOR agonism, WLB-73502 exerted full antinociceptive efficacy, with potency superior to morphine and similar to oxycodone against nociceptive, inflammatory and osteoarthritis pain, and superior to both morphine and oxycodone against neuropathic pain. WLB-73502 crosses the blood-brain barrier and binds brain S1R and MOR to an extent consistent with its antinociceptive effect. Contrary to morphine and oxycodone, tolerance to its antinociceptive effect did not develop after repeated 4-week administration. Also, contrary to opioid comparators, WLB-73502 did not inhibit gastrointestinal transit or respiratory function in rats at doses inducing full efficacy, and it was devoid of proemetic effect (retching and vomiting) in ferrets at potentially effective doses. WLB-73502 benefits from its bivalent S1R antagonist and partial MOR agonist nature to provide an improved antinociceptive and safety profile respect to strong opioid therapy.


Immunohistochemical localization of the sigma1-receptor in oligodendrocytes in the rat central nervous system.

  • Gabriel Palacios‎ et al.
  • Brain research‎
  • 2003‎

By using a new polyclonal antibody raised against a 21-amino acid peptide sequence corresponding to the fragment 138-157 of the cloned rat sigma(1)-receptor, we demonstrated by immunoperoxidase and double immunofluorescence techniques, that rat oligodendrocytes express the sigma(1)-receptor. Experiments in vivo and in vitro showed that sigma(1)-receptor colocalized with specific markers of progenitor (A2B5) and mature oligodendrocytes (GalC, RIP). These results suggest that sigma(1)-receptor in oligodendrocytes might be involved in myelination by direct implication in cholesterol biosynthesis or by interaction with endogenous ligands such as neurosteroids.


The arylpiperazine derivatives N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide and N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide exert a long-lasting inhibition of human serotonin 5-HT7 receptor binding and cAMP signaling.

  • Patricio Atanes‎ et al.
  • Pharmacology research & perspectives‎
  • 2013‎

We performed a detailed in vitro pharmacological characterization of two arylpiperazine derivatives, compound N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211) previously identified as a high-affinity brain penetrant ligand for 5-hydroxytryptamine (serotonin) type 7 (5-HT7) receptors, and its analog N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide (MEL-9). Both ligands exhibited competitive displacement of [(3)H]-(2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine ([(3)H]-SB-269970) radioligand binding and insurmountable antagonism of 5-carboxamidotryptamine (5-CT)-stimulated cyclic adenosine monophosphate (cAMP) signaling in human embryonic kidney (HEK293) cells stably expressing human 5-HT7 receptors. They also inhibited forskolin-stimulated adenylate cyclase activity in 5-HT7-expressing HEK293 cells but not in the parental cell line. The compounds elicited long-lasting (at least 24 h) concentration-dependent inhibition of radioligand binding at 5-HT7-binding sites in whole-cell radioligand binding assays, after pretreatment of the cells with the compounds and subsequent compound removal. In cAMP assays, pretreatment of cells with the compounds rendered 5-HT7 receptors unresponsive to 5-CT and also rendered 5-HT7-expressing HEK293 cells unresponsive to forskolin. Compound 1-(2-biphenyl)piperazine (RA-7), a known active metabolite of LP-211 present in vivo, was able to partially inhibit 5-HT7 radioligand binding in a long-lasting irreversible manner. Hence, LP-211 and MEL-9 were identified as high-affinity long-acting inhibitors of human 5-HT7 receptor binding and function in cell lines. The detailed in vitro characterization of these two pharmacological tools targeting 5-HT7 receptors may benefit the study of 5-HT7 receptor function and it may lead to the development of novel selective pharmacological tools with defined functional properties at 5-HT7 receptors.


Transient Reflexive Pain Responses and Chronic Affective Nonreflexive Pain Responses Associated with Neuroinflammation Processes in Both Spinal and Supraspinal Structures in Spinal Cord-Injured Female Mice.

  • Sílvia Castany‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Central neuropathic pain is not only characterized by reflexive pain responses, but also emotional or affective nonreflexive pain responses, especially in women. Some pieces of evidence suggest that the activation of the neuroimmune system may be contributing to the manifestation of mood disorders in patients with chronic pain conditions, but the mechanisms that contribute to the development and chronicity of CNP and its associated disorders remain poorly understood. This study aimed to determine whether neuroinflammatory factor over-expression in the spinal cord and supraspinal structures may be associated with reflexive and nonreflexive pain response development from acute SCI phase to 12 weeks post-injury in female mice. The results show that transient reflexive responses were observed during the SCI acute phase associated with transient cytokine overexpression in the spinal cord. In contrast, increased nonreflexive pain responses were observed in the chronic phase associated with cytokine overexpression in supraspinal structures, especially in mPFC. In addition, results revealed that besides cytokines, the mPFC showed an increased glial activation as well as CX3CL1/CX3CR1 upregulation in the neurons, suggesting the contribution of neuron-glia crosstalk in the development of nonreflexive pain responses in the chronic spinal cord injury phase.


TRPA1 modulation by Sigma-1 receptor prevents oxaliplatin-induced painful peripheral neuropathy.

  • Aida Marcotti‎ et al.
  • Brain : a journal of neurology‎
  • 2023‎

Chemotherapy-induced peripheral neuropathy is a frequent, disabling side effect of anticancer drugs. Oxaliplatin, a platinum compound used in the treatment of advanced colorectal cancer, often leads to a form of chemotherapy-induced peripheral neuropathy characterized by mechanical and cold hypersensitivity. Current therapies for chemotherapy-induced peripheral neuropathy are ineffective, often leading to the cessation of treatment. Transient receptor potential ankyrin 1 (TRPA1) is a polymodal, non-selective cation-permeable channel expressed in nociceptors, activated by physical stimuli and cellular stress products. TRPA1 has been linked to the establishment of chemotherapy-induced peripheral neuropathy and other painful neuropathic conditions. Sigma-1 receptor is an endoplasmic reticulum chaperone known to modulate the function of many ion channels and receptors. Sigma-1 receptor antagonist, a highly selective antagonist of Sigma-1 receptor, has shown effectiveness in a phase II clinical trial for oxaliplatin chemotherapy-induced peripheral neuropathy. However, the mechanisms involved in the beneficial effects of Sigma-1 receptor antagonist are little understood. We combined biochemical and biophysical (i.e. intermolecular Förster resonance energy transfer) techniques to demonstrate the interaction between Sigma-1 receptor and human TRPA1. Pharmacological antagonism of Sigma-1R impaired the formation of this molecular complex and the trafficking of functional TRPA1 to the plasma membrane. Using patch-clamp electrophysiological recordings we found that antagonists of Sigma-1 receptor, including Sigma-1 receptor antagonist, exert a marked inhibition on plasma membrane expression and function of human TRPA1 channels. In TRPA1-expressing mouse sensory neurons, Sigma-1 receptor antagonists reduced inward currents and the firing of actions potentials in response to TRPA1 agonists. Finally, in a mouse experimental model of oxaliplatin neuropathy, systemic treatment with a Sigma-1 receptor antagonists prevented the development of painful symptoms by a mechanism involving TRPA1. In summary, the modulation of TRPA1 channels by Sigma-1 receptor antagonists suggests a new strategy for the prevention and treatment of chemotherapy-induced peripheral neuropathy and could inform the development of novel therapeutics for neuropathic pain.


Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia.

  • José Borrell‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2002‎

Increasing evidence associates schizophrenia with prenatal exposure to infection. Impaired ability to "gate out" sensory and cognitive information is considered to be a central feature of schizophrenia and is manifested, among others, in disrupted prepulse inhibition (PPI) of the acoustic startle reflex. We analyzed the effect of a prenatal immune challenge- peripheral administration of bacterial endotoxin lipopolysaccharide (LPS) to pregnant female rats-upon PPI and immune function in adult offspring. Prenatal LPS treatment disrupted PPI which was reversed by antipsychotics. Serum levels of interleukin-2 and interleukin-6 were increased. In addition, histopathological features in brain areas related with PPI circuitry were observed. These results illustrate the critical influence of prenatal immune events upon adult CNS functioning in association with the putative role of the immune system in the etiopathogenesis of schizophrenia.


Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity.

  • Alex Brenchat‎ et al.
  • Pain‎
  • 2010‎

The involvement of the 5-HT(7) receptor in nociception and pain, particularly chronic pain (i.e., neuropathic pain), has been poorly investigated. In the present study, we examined whether the 5-HT(7) receptor participates in some modulatory control of nerve injury-evoked mechanical hypersensitivity and thermal (heat) hyperalgesia in mice. Activation of 5-HT(7) receptors by systemic administration of the selective 5-HT(7) receptor agonist AS-19 (1 and 10mg/kg) exerted a clear-cut reduction of mechanical and thermal hypersensitivities that were reversed by co-administering the selective 5-HT(7) receptor antagonist SB-258719. Interestingly, blocking of 5-HT(7) receptors with SB-258719 (2.5 and 10mg/kg) enhanced mechanical (but not thermal) hypersensitivity in nerve-injured mice and induced mechanical hypersensitivity in sham-operated mice. Effectiveness of the treatment with a 5-HT(7) receptor agonist was maintained after repeated systemic administration: no tolerance to the antiallodynic and antihyperalgesic effects was developed following treatment with the selective 5-HT(7) receptor agonist E-57431 (10mg/kg) twice daily for 11 days. The 5-HT(7) receptor co-localized with GABAergic cells in the dorsal horn of the spinal cord, suggesting that the activation of spinal inhibitory GABAergic interneurons could contribute to the analgesic effects of 5-HT(7) receptor agonists. In addition, a significant increase of 5-HT(7) receptors was found by immunohistochemistry in the ipsilateral dorsal horn of the spinal cord after nerve injury, suggesting a "pain"-triggered regulation of receptor expression. These results support the idea that the 5-HT(7) receptor subtype is involved in the control of pain and point to a new potential use of 5-HT(7) receptor agonists for the treatment of neuropathic pain.


Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury.

  • Beatriz de la Puente‎ et al.
  • Pain‎
  • 2009‎

Sigma-1 receptor (sigma(1)R) is expressed in key CNS areas involved in nociceptive processing but only limited information is available about its functional role. In the present study we investigated the relevance of sigma(1)R in modulating nerve injury-evoked pain. For this purpose, wild-type mice and mice lacking the sigma(1)R gene were exposed to partial sciatic nerve ligation and neuropathic pain-related behaviors were investigated. To explore underlying mechanisms, spinal processing of repetitive nociceptive stimulation and expression of extracellular signal-regulated kinase (ERK) were also investigated. Sensitivity to noxious heat of homozygous sigma(1)R knockout mice did not differ from wild-type mice. Baseline values obtained in sigma(1)R knockout mice before nerve injury in the plantar, cold-plate and von Frey tests were also indistinguishable from those obtained in wild-type mice. However, cold and mechanical allodynia did not develop in sigma(1)R null mice exposed to partial sciatic nerve injury. Using isolated spinal cords we found that mice lacking sigma(1)R showed reduced wind-up responses respect to wild-type mice, as evidenced by a reduced number of action potentials induced by trains of C-fiber intensity stimuli. In addition, in contrast to wild-type mice, sigma(1)R knockout mice did not show increased phosphorylation of ERK in the spinal cord after sciatic nerve injury. Both wind-up and ERK activation have been related to mechanisms of spinal cord sensitization. Our findings identify sigma(1)R as a constituent of the mechanisms modulating activity-induced sensitization in pain pathways and point to sigma(1)R as a new potential target for drugs designed to alleviate neuropathic pain.


Selective inhibition of cyclooxygenase-2 by enflicoxib, its enantiomers and its main metabolites in vitro in canine blood.

  • Josep Solà‎ et al.
  • Journal of veterinary pharmacology and therapeutics‎
  • 2022‎

Enflicoxib is approved for the treatment of pain and inflammation in canine osteoarthritis. The objective of this work was to assess the mechanistic basis of enflicoxib therapy investigating the COX inhibitory activity of enflicoxib (racemate), its enantiomers and its main metabolites using the canine whole blood assay. The (R)-(+)-Enflicoxib enantiomer and metabolite M8 (hydroxylated pyrazoline) did not induce significant COX inhibition. Enflicoxib and its (S)-(-)-Enflicoxib enantiomer inhibited COX-1 and COX-2 with variable degree of preferential isoform inhibition, but no significant therapeutic effect is anticipated in vivo. The pyrazol metabolite showed the highest COX-2 inhibition and was the most selective (IC50 COX-1/ COX-2 ratio: 19.45). As the pyrazol metabolite shows saturable binding to red blood cells, its in vivo concentrations in plasma are lower than in whole blood. Accordingly, when applying the red blood cell partitioning, the respective IC50 and IC80 for COX-2 inhibition decreased from 2.8 µM (1129 ng/ml) and 13.4 µM (5404 ng/ml) to 0.2 µM (80.7 ng/ml) and 1.2 µM (484 ng/ml) and the selectivity ratio increased to close to 55. The corrected pyrazol metabolite IC50 and IC80 are well within the plasma levels described in treated dogs.


Chemoenzymatic synthesis of 2,6-disubstituted tetrahydropyrans with high σ1 receptor affinity, antitumor and analgesic activity.

  • Nicole Kopp‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

1,3-Dioxanes 1 and cyclohexanes 2 bearing a phenyl ring and an aminoethyl moiety in 1,3-relationship to each other represent highly potent σ1 receptor antagonists. In order to increase the chemical stability of the acetalic 1,3-dioxanes 1 and the polarity of the cyclohexanes 2, tetrahydropyran derivatives 3 equipped with the same substituents were designed, synthesized and pharmacologically evaluated. The key step of the synthesis was a lipase-catalyzed enantioselective acetylation of the alcohol (R)-5 leading finally to enantiomerically pure test compounds 3a-g. With respect to σ1 receptor affinity and selectivity over a broad range of related (σ2, PCP binding site) and further targets, the enantiomeric benzylamines 3a and cyclohexylmethylamines 3b represent the most promising drug candidates of this series. However, the eudismic ratio for σ1 binding is only in the range of 2.5-3.3. Classical molecular dynamics (MD) simulations confirmed the same binding pose for both the tetrahydropyran 3 and cyclohexane derivatives 2 at the σ1 receptor, according to which: i) the protonated amino moiety of (2S,6R)-3a engages the same key polar interactions with Glu172 (ionic) and Phe107 (π-cation), ii) the lipophilic parts of (2S,6R)-3a are hosted in three hydrophobic regions of the σ1 receptor, and iii) the O-atom of the tetrahydropyran derivatives 3 does not show a relevant interaction with the σ1 receptor. Further in silico evidences obtained by the application of free energy perturbation and steered MD techniques fully supported the experimentally observed difference in receptor/ligand affinities. Tetrahydropyrans 3 require a lower dissociative force peak than cyclohexane analogs 2. Enantiomeric benzylamines 3a and cyclohexylmethylamines 3b were able to inhibit the growth of the androgen negative human prostate cancer cell line DU145. The cyclohexylmethylamine (2S,6R)-3b showed the highest σ1 affinity (Ki(σ1) = 0.95 nM) and the highest analgesic activity in vivo (67%).


Single-dose pharmacokinetics of co-crystal of tramadol-celecoxib: Results of a four-way randomized open-label phase I clinical trial in healthy subjects.

  • Sebastián Videla‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

Co-crystal of tramadol-celecoxib (CTC) is a novel co-crystal molecule containing two active pharmaceutical ingredients under development by Esteve (E-58425) and Mundipharma Research (MR308). This Phase I study compared single-dose pharmacokinetics (PK) of CTC with those of the individual reference products [immediate-release (IR) tramadol and celecoxib] alone and in open combination.


Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice.

  • Sílvia Castany‎ et al.
  • Scientific reports‎
  • 2018‎

Sigma-1 receptor (σ1R) knockout (KO) CD1 mice, generated by homologous recombination, and separate pharmacological studies in wild type (WT) mice were done to investigate the role of this receptor in the development of pain-related behaviours (thermal hyperalgesia and mechanical allodynia) in mice after spinal cord contusion injury (SCI) - a model of central neuropathic pain. The modulatory effect of σ1R KO on extracellular mediators and signalling pathways in the spinal cord was also investigated. In particular, changes in the expression of inflammatory cytokines (tumour necrosis factor TNF-α, interleukin IL-1β) and both the expression and activation (phosphorylation) of the N-methyl-D-aspartate receptor subunit 2B (NR2B-NMDA) and extracellular signal-regulated kinases (ERK1/2) were analysed. Compared with WT mice, both mechanical and thermal hypersensitivity were attenuated in σ1R KO mice following SCI. Accordingly, treatment of WT mice with the σ1R antagonist MR309 (previously developed as E-52862; S1RA) after SCI exerted antinociceptive effects (i.e. reduced mechanical allodynia and thermal hyperalgesia). Attenuated nociceptive responses in σ1R KO were accompanied by reduced expression of TNF- α and IL-1β as well as decreased activation/phosphorylation of NR2B-NMDA receptors and ERK1/2. These findings suggest that σ1R may modulate central neuropathic pain and point to regulation of sensitization-related phenomena as a possible mechanism.


Development of a Novel σ1 Receptor Biosensor Based on Its Heterodimerization with Binding Immunoglobulin Protein in Living Cells.

  • Xavier Morató‎ et al.
  • ACS chemical neuroscience‎
  • 2023‎

The σ1 receptor (S1R) is a ligand-regulated non-opioid intracellular receptor involved in several pathological conditions. The development of S1R-based drugs as therapeutic agents is a challenge due to the lack of simple functional assays to identify and classify S1R ligands. We have developed a novel nanoluciferase binary technology (NanoBiT) assay based on the ability of S1R to heteromerize with the binding immunoglobulin protein (BiP) in living cells. The S1R-BiP heterodimerization biosensor allows for rapid and accurate identification of S1R ligands by monitoring the dynamics of association-dissociation of S1R and BiP. Acute treatment of cells with the S1R agonist PRE-084 produced rapid and transient dissociation of the S1R-BiP heterodimer, which was blocked by haloperidol. The effect of PRE-084 was enhanced by calcium depletion, leading to a higher reduction in heterodimerization even in the presence of haloperidol. Prolonged incubation of cells with S1R antagonists (haloperidol, NE-100, BD-1047, and PD-144418) increased the formation of S1R-BiP heteromers, while agonists (PRE-084, 4-IBP, and pentazocine) did not alter heterodimerization under the same experimental conditions. The newly developed S1R-BiP biosensor is a simple and effective tool for exploring S1R pharmacology in an easy cellular setting. This biosensor is suitable for high-throughput applications and a valuable resource in the researcher's toolkit.


A New Pharmacophore Model for the Design of Sigma-1 Ligands Validated on a Large Experimental Dataset.

  • Rosalia Pascual‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

The recent publication of the σ1R crystal structure is an important cornerstone for the derivation of more accurate activity prediction models. We report here a comparative study involving a set of more than 25,000 structures from our internal database that had been screened for σ1R affinity. Using the recently published crystal structure, 5HK1, two new pharmacophore models were generated. The first one, 5HK1-Ph.A, was obtained by an algorithm that identifies the most important receptor-ligand interactions including volume restrictions enforced by the atomic structure of the recognition site. The second, 5HK1-Ph.B, resulted from a manual edition of the first one by the fusion of two hydrophobic (HYD) features. Finally, we also docked the database using a high throughput docking technique and scored the resulting poses with seven different scoring functions. Statistical performance measures were obtained for the two models, comparing them with previously published σ1R pharmacophores (Hit Rate, sensitivity, specificity, and Receiver Operator Characteristic) and 5HK1-Ph.B emerged as the best one in discriminating between active and inactive compounds, with a ROC-AUC value above 0.8 and enrichment values above 3 at different fractions of screened samples. 5HK1-Ph.B also showed better results than the direct docking, which may be due to the rigidity of the crystal structure in the docking process (i.e., feature tolerances in the pharmacophore model). Additionally, the impact of the HYD interactions and the penalty for desolvating ligands with polar atoms may be not adequately captured by scoring functions, whereas HYD groups filling up such regions of the binding site are entailed in the pharmacophore model. Altogether, using annotated data from a large and diverse compound collection together with crystal structure information provides a sound basis for the generation and validation of predictive models to design new molecules.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: