Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

No apparent transmission of transgenic α-synuclein into nigrostriatal dopaminergic neurons in multiple mouse models.

  • Namratha Sastry‎ et al.
  • Translational neurodegeneration‎
  • 2015‎

α-synuclein (α-syn) is the main component of intracytoplasmic inclusions deposited in the brains of patients with Parkinson's disease (PD) and certain other neurodegenerative disorders. Recent studies have explored the ability of α-syn to propagate between or across neighboring neurons and supposedly "infect" them with a prion-like mechanism. However, much of this research has used stereotaxic injections of heterologous α-syn fibrils to induce the spreading of inclusions in the rodent brains. Whether α-syn is able to transmit from the host cells to their neighboring cells in vivo is unclear.


Unbalanced calcium channel activity underlies selective vulnerability of nigrostriatal dopaminergic terminals in Parkinsonian mice.

  • Carmelo Sgobio‎ et al.
  • Scientific reports‎
  • 2019‎

Dopamine (DA) release in striatum is functionally segregated across a dorsolateral/ventromedial axis. Interestingly, nigrostriatal DA signaling disruption in Parkinson's disease (PD) preferentially affects the dorsolateral striatum. The relationship between afferent presynaptic calcium transients (PreCaTs) in DA terminals and DA release in dorsolateral (Caudato-Putamen, DLS) and ventromedial (Nucleus Accumbens Shell, VS) striatal subregions was examined by ex vivo real-time dual-recording in conditional transgenic mice expressing the calcium indicator protein GCaMP3. In DLS, minimal increases in cytosolic calcium trigger steep DA release while PreCaTs and DA release in VS both were proportional to the number of pulses in burst stimulation. Co-expressing α-synuclein with the Parkinson's disease (PD)-associated A53T mutation and GCaMP3 in midbrain DA neurons revealed augmented cytosolic steady state and activity-dependent intra-terminal calcium levels preferentially in DLS, as well as hyperactivation and enhanced expression of N-type calcium channels. Thus, unbalanced calcium channel activity is a presynaptic mechanism to consider in the multifaceted pathogenic pathways of progressive neurodegeneration.


TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging.

  • Daichao Xu‎ et al.
  • Cell‎
  • 2018‎

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Constitutive activation of β-catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system.

  • Julia Pöschl‎ et al.
  • Developmental biology‎
  • 2013‎

Wnt signaling is known to play crucial roles in the development of multiple organs as well as in cancer. In particular, constitutive activation of Wnt/β-Catenin signaling in distinct populations of forebrain or brainstem precursor cells has previously been shown to result in dramatic brain enlargement during embryonic stages of development as well as in the formation of medulloblastoma, a malignant brain tumor in childhood. In order to extend this knowledge to postnatal stages of both cerebral and cerebellar cortex development, we conditionally activated Wnt signaling by introducing a dominant active form of β-catenin in hGFAP-positive neural precursors. Such mutant mice survived up to 21 days postnatally. While the mice revealed enlarged ventricles and an initial expansion of the Pax6-positive ventricular zone, Pax6 expression and proliferative activity in the ventricular zone was virtually lost by embryonic day 16.5. Loss of Pax6 expression was not followed by expression of the subventricular zone marker Tbr2, indicating insufficient neuronal differentiation. In support of this finding, cortical thickness was severely diminished in all analyzed stages from embryonic day 14.5 to postnatal day 12, and appropriate layering was not detectable. Similarly, cerebella of hGFAP-cre::Ctnnb1(ex3)(Fl/+) mice were hypoplastic and displayed severe lamination defects. Constitutively active β-Catenin induced inappropriate proliferation of granule neurons and inadequate development of Bergmann glia, thereby preventing regular migration of granule cells and normal cortical layering. We conclude that Wnt signaling has divergent roles in the central nervous system and that Wnt needs to be tightly controlled in a time- and cell type-specific manner.


Contextual learning increases dendrite complexity and EphrinB2 levels in hippocampal mouse neurons.

  • Antonio Trabalza‎ et al.
  • Behavioural brain research‎
  • 2012‎

Although the role of hippocampus in memory processing is well assessed, an association of experience-dependent behavioural modifications with hippocampal neuron morphological and biochemical changes deserves further characterisation. Here, we present evidence of dendritic alterations together with rapid accumulation of EphrinB2, a factor known to influence cell plasticity, in pyramidal neurons of the CA1 area of mouse hippocampus, during the formation of recent contextual fear memory. Male C57BL/6N mice exhibited a robust fear response 24h after contextual and cued fear conditioning. At this time and in the absence of the memory test, conditioned mice showed morphological alterations in hippocampal and lateral amygdala neurons. Western blot analysis of extracts from conditioned but not pseudoconditioned or naive mice showed a specific increase in the amount of EphrinB2 in the hippocampus but not the cortex. However, levels of EphA4 receptor, known to interact trans-synaptically with EphrinB2, did not change upon conditioning in extracts from the same structures. Finally, immunohistochemical analysis of the hippocampus and amygdala of conditioned mice showed increased levels of EphrinB2 in pyramidal neurons of the CA1 area, when compared to pseudoconditioned and control mice. Such increase was not observed in other hippocampal areas or the amygdala. These results suggest that rapid accumulation of EphrinB2 in hippocampal CA1 neurons is involved in the behavioural and cellular modifications induced by contextual fear conditioning. A similar mechanism does not appear to occur in lateral amygdala neurons, in spite of the robust behavioural and cellular modifications induced in such structure by cued fear conditioning.


Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease.

  • Michael Bockmayr‎ et al.
  • Neuro-oncology‎
  • 2022‎

Myxopapillary ependymoma (MPE) is a heterogeneous disease regarding histopathology and outcome. The underlying molecular biology is poorly understood, and markers that reliably predict the patients' clinical course are unknown.


Deficiency of Perry syndrome-associated p150Glued in midbrain dopaminergic neurons leads to progressive neurodegeneration and endoplasmic reticulum abnormalities.

  • Jia Yu‎ et al.
  • NPJ Parkinson's disease‎
  • 2023‎

Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.


Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer's disease.

  • Chengyu Zou‎ et al.
  • Acta neuropathologica‎
  • 2015‎

Alzheimer's disease (AD) is thought to be caused by accumulation of amyloid-β protein (Aβ), which is a cleavage product of amyloid precursor protein (APP). Transgenic mice overexpressing APP have been used to recapitulate amyloid-β pathology. Among them, APP23 and APPswe/PS1deltaE9 (deltaE9) mice are extensively studied. APP23 mice express APP with Swedish mutation and develop amyloid plaques late in their life, while cognitive deficits are observed in young age. In contrast, deltaE9 mice with mutant APP and mutant presenilin-1 develop amyloid plaques early but show typical cognitive deficits in old age. To unveil the reasons for different progressions of cognitive decline in these commonly used mouse models, we analyzed the number and turnover of dendritic spines as important structural correlates for learning and memory. Chronic in vivo two-photon imaging in apical tufts of layer V pyramidal neurons revealed a decreased spine density in 4-5-month-old APP23 mice. In age-matched deltaE9 mice, in contrast, spine loss was only observed on cortical dendrites that were in close proximity to amyloid plaques. In both cases, the reduced spine density was caused by decreased spine formation. Interestingly, the patterns of alterations in spine morphology differed between these two transgenic mouse models. Moreover, in APP23 mice, APP was found to accumulate intracellularly and its content was inversely correlated with the absolute spine density and the relative number of mushroom spines. Collectively, our results suggest that different pathological mechanisms, namely an intracellular accumulation of APP or extracellular amyloid plaques, may lead to spine abnormalities in young adult APP23 and deltaE9 mice, respectively. These distinct features, which may represent very different mechanisms of synaptic failure in AD, have to be taken into consideration when translating results from animal studies to the human disease.


Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson's disease.

  • Vincenza Bagetta‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2012‎

Dopamine replacement with levodopa (L-DOPA) represents the mainstay of Parkinson’s disease (PD) therapy. Nevertheless, this well established therapeutic intervention loses efficacy with the progression of the disease and patients develop invalidating side effects, known in their complex as L-DOPA-induced dyskinesia (LID). Unfortunately, existing therapies fail to prevent LID and very few drugs are available to lessen its severity, thus representing a major clinical problem inPDtreatment. D2-like receptor (D2R) agonists are a powerful clinical option as an alternative to L-DOPA, especially in the early stages of the disease, being associated to a reduced risk of dyskinesia development. D2R agonists also find considerable application in the advanced stages of PD, in conjunction with L-DOPA, which is used in this context at lower dosages, to delay the appearance and the extent of the motor complications. In advanced stages of PD, D2R agonists are often effective in delaying the appearance and the extent of motor complications. Despite the great attention paid to the family of D2R agonists, the main reasons underlying the reduced risk of dyskinesia have not yet been fully characterized. Here we show that the striatal NMDA/AMPAreceptor ratio and theAMPAreceptor subunit composition are altered in experimental parkinsonism in rats. Surprisingly, while L-DOPA fails to restore these critical synaptic alterations, chronic treatment with pramipexole is associated not only with a reduced risk of dyskinesia development but is also able to rebalance, in a dose-dependent fashion, the physiological synaptic parameters, thus providing new insights into the mechanisms of dyskinesia.


Amyloid plaque formation precedes dendritic spine loss.

  • Tobias Bittner‎ et al.
  • Acta neuropathologica‎
  • 2012‎

Amyloid-beta plaque deposition represents a major neuropathological hallmark of Alzheimer's disease. While numerous studies have described dendritic spine loss in proximity to plaques, much less is known about the kinetics of these processes. In particular, the question as to whether synapse loss precedes or follows plaque formation remains unanswered. To address this question, and to learn more about the underlying kinetics, we simultaneously imaged amyloid plaque deposition and dendritic spine loss by applying two-photon in vivo microscopy through a cranial window in double transgenic APPPS1 mice. As a result, we first observed that the rate of dendritic spine loss in proximity to plaques is the same in both young and aged animals. However, plaque size only increased significantly in the young cohort, indicating that spine loss persists even many months after initial plaque appearance. Tracking the fate of individual spines revealed that net spine loss is caused by increased spine elimination, with the rate of spine formation remaining constant. Imaging of dendritic spines before and during plaque formation demonstrated that spine loss around plaques commences at least 4 weeks after initial plaque formation. In conclusion, spine loss occurs, shortly but with a significant time delay, after the birth of new plaques, and persists in the vicinity of amyloid plaques over many months. These findings hence give further hope to the possibility that there is a therapeutic window between initial amyloid plaque deposition and the onset of structural damage at spines.


The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis.

  • Bernhard Goetze‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Mammalian Staufen2 (Stau2) is a member of the double-stranded RNA-binding protein family. Its expression is largely restricted to the brain. It is thought to play a role in the delivery of RNA to dendrites of polarized neurons. To investigate the function of Stau2 in mature neurons, we interfered with Stau2 expression by RNA interference (RNAi). Mature neurons lacking Stau2 displayed a significant reduction in the number of dendritic spines and an increase in filopodia-like structures. The number of PSD95-positive synapses and miniature excitatory postsynaptic currents were markedly reduced in Stau2 down-regulated neurons. Akin effects were caused by overexpression of dominant-negative Stau2. The observed phenotype could be rescued by overexpression of two RNAi cleavage-resistant Stau2 isoforms. In situ hybridization revealed reduced expression levels of beta-actin mRNA and fewer dendritic beta-actin mRNPs in Stau2 down-regulated neurons. Thus, our data suggest an important role for Stau2 in the formation and maintenance of dendritic spines of hippocampal neurons.


Aldehyde dehydrogenase 1-positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum.

  • Carmelo Sgobio‎ et al.
  • Scientific reports‎
  • 2017‎

Aldehyde dehydrogenase 1 (ALDH1A1)-positive dopaminergic (DA) neurons at the ventral substantia nigra pars compacta (SNpc) preferentially degenerate in Parkinson's disease (PD). Their projection pattern and dopamine release properties, however, remains uncharacterized. Here we show that ALDH1A1-positive axons project predominantly to the rostral two-thirds of dorsal striatum. A portion of these axons converge on a small fraction of striosome compartments restricted to the dorsolateral striatum (DLS), where less dopamine release was measured compared to the adjacent matrix enriched with the ALDH1A1-negative axons. Genetic ablation of Aldh1a1 substantially increases the dopamine release in striosomes, but not in matrix. Additionally, the presence of PD-related human α-synuclein A53T mutant or dopamine transporter (DAT) blockers also differentially affects the dopamine output in striosomes and matrix. Together, these results demonstrate distinct dopamine release characteristics of ALDH1A1-positive DA fibers, supporting a regional specific function of ALDH1A1 in regulating dopamine availability/release in striatum.


Tau deletion reduces plaque-associated BACE1 accumulation and decelerates plaque formation in a mouse model of Alzheimer's disease.

  • Finn Peters‎ et al.
  • The EMBO journal‎
  • 2019‎

In Alzheimer's disease, BACE1 protease initiates the amyloidogenic processing of amyloid precursor protein (APP) that eventually results in synthesis of β-amyloid (Aβ) peptide. Aβ deposition in turn causes accumulation of BACE1 in plaque-associated dystrophic neurites, thereby potentiating progressive Aβ deposition once initiated. Since systemic pharmacological BACE inhibition causes adverse effects in humans, it is important to identify strategies that specifically normalize overt BACE1 activity around plaques. The microtubule-associated protein tau regulates axonal transport of proteins, and tau deletion rescues Aβ-induced transport deficits in vitro. In the current study, long-term in vivo two-photon microscopy and immunohistochemistry were performed in tau-deficient APPPS1 mice. Tau deletion reduced plaque-associated axonal pathology and BACE1 accumulation without affecting physiological BACE1 expression distant from plaques. Thereby, tau deletion effectively decelerated formation of new plaques and reduced plaque compactness. The data revealed that tau reinforces Aβ deposition, presumably by contributing to accumulation of BACE1 in plaque-associated dystrophies. Targeting tau-dependent mechanisms could become a suitable strategy to specifically reduce overt BACE1 activity around plaques, thereby avoiding adverse effects of systemic BACE inhibition.


Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibition Impairs Synaptic Plasticity via Seizure Protein 6.

  • Kaichuan Zhu‎ et al.
  • Biological psychiatry‎
  • 2018‎

Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a promising drug target for the treatment of Alzheimer's disease. Prolonged BACE1 inhibition interferes with structural and functional synaptic plasticity in mice, most likely by altering the metabolism of BACE1 substrates. Seizure protein 6 (SEZ6) is predominantly cleaved by BACE1, and Sez6 knockout mice share some phenotypes with BACE1 inhibitor-treated mice. We investigated whether SEZ6 is involved in BACE1 inhibition-induced structural and functional synaptic alterations.


The Neurokinin-1 Receptor Is a Target in Pediatric Rhabdoid Tumors.

  • Julian Kolorz‎ et al.
  • Current oncology (Toronto, Ont.)‎
  • 2021‎

Rhabdoid tumors (RT) are among the most aggressive tumors in early childhood. Overall survival remains poor, and treatment only effectively occurs at the cost of high toxicity and late adverse effects. It has been reported that the neurokinin-1 receptor/ substance P complex plays an important role in cancer and proved to be a promising target. However, its role in RT has not yet been described. This study aims to determine whether the neurokinin-1 receptor is expressed in RT and whether neurokinin-1 receptor (NK1R) antagonists can serve as a novel therapeutic approach in treating RTs. By in silico analysis using the cBio Cancer Genomics Portal we found that RTs highly express neurokinin-1 receptor. We confirmed these results by RT-PCR in both tumor cell lines and in human tissue samples of various affected organs. We demonstrated a growth inhibitory and apoptotic effect of aprepitant in viability assays and flow cytometry. Furthermore, this effect proved to remain when used in combination with the cytostatic cisplatin. Western blot analysis showed an upregulation of apoptotic signaling pathways in rhabdoid tumors when treated with aprepitant. Overall, our findings suggest that NK1R may be a promising target for the treatment of RT in combination with other anti-cancer therapies and can be targeted with the NK1R antagonist aprepitant.


Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology.

  • Fanfan Sun‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2022‎

Misfolded α-synuclein spreads along anatomically connected areas through the brain, prompting progressive neurodegeneration of the nigrostriatal pathway in Parkinson's disease. To investigate the impact of early stage seeding and spreading of misfolded α-synuclein along with the nigrostriatal pathway, we studied the pathophysiologic effect induced by a single acute α-synuclein preformed fibrils (PFFs) inoculation into the midbrain. Further, to model the progressive vulnerability that characterizes the dopamine (DA) neuron life span, we used two cohorts of mice with different ages: 2-month-old (young) and 5-month-old (adult) mice. Two months after α-synuclein PFFs injection, we found that striatal DA release decreased exclusively in adult mice. Adult DA neurons showed an increased level of pathology spreading along with the nigrostriatal pathway accompanied with a lower volume of α-synuclein deposition in the midbrain, impaired neurotransmission, rigid DA terminal composition, and less microglial reactivity compared with young neurons. Notably, preserved DA release and increased microglial coverage in the PFFs-seeded hemisphere coexist with decreased large-sized terminal density in young DA neurons. This suggests the presence of a targeted pruning mechanism that limits the detrimental effect of α-synuclein early spreading. This study suggests that the impact of the pathophysiology caused by misfolded α-synuclein spreading along the nigrostriatal pathway depends on the age of the DA network, reducing striatal DA release specifically in adult mice.


Pre-therapeutic microglia activation and sex determine therapy effects of chronic immunomodulation.

  • Gloria Biechele‎ et al.
  • Theranostics‎
  • 2021‎

Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and β-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar β-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.


LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity.

  • Loukia Parisiadou‎ et al.
  • Nature neuroscience‎
  • 2014‎

Leucine-rich repeat kinase 2 (LRRK2) is enriched in the striatal projection neurons (SPNs). We found that LRRK2 negatively regulates protein kinase A (PKA) activity in the SPNs during synaptogenesis and in response to dopamine receptor Drd1 activation. LRRK2 interacted with PKA regulatory subunit IIβ (PKARIIβ). A lack of LRRK2 promoted the synaptic translocation of PKA and increased PKA-mediated phosphorylation of actin-disassembling enzyme cofilin and glutamate receptor GluR1, resulting in abnormal synaptogenesis and transmission in the developing SPNs. Furthermore, PKA-dependent phosphorylation of GluR1 was also aberrantly enhanced in the striatum of young and aged Lrrk2(-/-) mice after treatment with a Drd1 agonist. Notably, a Parkinson's disease-related Lrrk2 R1441C missense mutation that impaired the interaction of LRRK2 with PKARIIβ also induced excessive PKA activity in the SPNs. Our findings reveal a previously unknown regulatory role for LRRK2 in PKA signaling and suggest a pathogenic mechanism of SPN dysfunction in Parkinson's disease.


Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis.

  • Chengyu Zou‎ et al.
  • The EMBO journal‎
  • 2016‎

Dynamic synapses facilitate activity-dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP-KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP-KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP The underlying mechanism of these spine abnormalities in APP-KO mice was ascribed to an impairment in D-serine homeostasis. Extracellular D-serine concentration was significantly reduced in APP-KO mice, coupled with an increase of total D-serine. Strikingly, chronic treatment with exogenous D-serine normalized D-serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP-KO mice. The cognitive deficit observed in APP-KO mice was also rescued by D-serine treatment. These data suggest that APP regulates homeostasis of D-serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.


Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease.

  • Amy R Dunn‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2017‎

Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: