Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 79 papers

Contextual learning increases dendrite complexity and EphrinB2 levels in hippocampal mouse neurons.

  • Antonio Trabalza‎ et al.
  • Behavioural brain research‎
  • 2012‎

Although the role of hippocampus in memory processing is well assessed, an association of experience-dependent behavioural modifications with hippocampal neuron morphological and biochemical changes deserves further characterisation. Here, we present evidence of dendritic alterations together with rapid accumulation of EphrinB2, a factor known to influence cell plasticity, in pyramidal neurons of the CA1 area of mouse hippocampus, during the formation of recent contextual fear memory. Male C57BL/6N mice exhibited a robust fear response 24h after contextual and cued fear conditioning. At this time and in the absence of the memory test, conditioned mice showed morphological alterations in hippocampal and lateral amygdala neurons. Western blot analysis of extracts from conditioned but not pseudoconditioned or naive mice showed a specific increase in the amount of EphrinB2 in the hippocampus but not the cortex. However, levels of EphA4 receptor, known to interact trans-synaptically with EphrinB2, did not change upon conditioning in extracts from the same structures. Finally, immunohistochemical analysis of the hippocampus and amygdala of conditioned mice showed increased levels of EphrinB2 in pyramidal neurons of the CA1 area, when compared to pseudoconditioned and control mice. Such increase was not observed in other hippocampal areas or the amygdala. These results suggest that rapid accumulation of EphrinB2 in hippocampal CA1 neurons is involved in the behavioural and cellular modifications induced by contextual fear conditioning. A similar mechanism does not appear to occur in lateral amygdala neurons, in spite of the robust behavioural and cellular modifications induced in such structure by cued fear conditioning.


No apparent transmission of transgenic α-synuclein into nigrostriatal dopaminergic neurons in multiple mouse models.

  • Namratha Sastry‎ et al.
  • Translational neurodegeneration‎
  • 2015‎

α-synuclein (α-syn) is the main component of intracytoplasmic inclusions deposited in the brains of patients with Parkinson's disease (PD) and certain other neurodegenerative disorders. Recent studies have explored the ability of α-syn to propagate between or across neighboring neurons and supposedly "infect" them with a prion-like mechanism. However, much of this research has used stereotaxic injections of heterologous α-syn fibrils to induce the spreading of inclusions in the rodent brains. Whether α-syn is able to transmit from the host cells to their neighboring cells in vivo is unclear.


Effect of Adoptive Transfer or Depletion of Regulatory T Cells on Triptolide-induced Liver Injury.

  • Xinzhi Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2016‎

The aim of this study is to clarify the role of regulatory T cell (Treg) in triptolide (TP)-induced hepatotoxicity.


Unbalanced calcium channel activity underlies selective vulnerability of nigrostriatal dopaminergic terminals in Parkinsonian mice.

  • Carmelo Sgobio‎ et al.
  • Scientific reports‎
  • 2019‎

Dopamine (DA) release in striatum is functionally segregated across a dorsolateral/ventromedial axis. Interestingly, nigrostriatal DA signaling disruption in Parkinson's disease (PD) preferentially affects the dorsolateral striatum. The relationship between afferent presynaptic calcium transients (PreCaTs) in DA terminals and DA release in dorsolateral (Caudato-Putamen, DLS) and ventromedial (Nucleus Accumbens Shell, VS) striatal subregions was examined by ex vivo real-time dual-recording in conditional transgenic mice expressing the calcium indicator protein GCaMP3. In DLS, minimal increases in cytosolic calcium trigger steep DA release while PreCaTs and DA release in VS both were proportional to the number of pulses in burst stimulation. Co-expressing α-synuclein with the Parkinson's disease (PD)-associated A53T mutation and GCaMP3 in midbrain DA neurons revealed augmented cytosolic steady state and activity-dependent intra-terminal calcium levels preferentially in DLS, as well as hyperactivation and enhanced expression of N-type calcium channels. Thus, unbalanced calcium channel activity is a presynaptic mechanism to consider in the multifaceted pathogenic pathways of progressive neurodegeneration.


A potential therapeutic effect of catalpol in Duchenne muscular dystrophy revealed by binding with TAK1.

  • Dengqiu Xu‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2020‎

Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the loss of dystrophin, which results in inflammation, fibrosis, and the inhibition of myoblast differentiation in skeletal muscle. Catalpol, an iridoid glycoside, improves skeletal muscle function by enhancing myogenesis; it has potential to treat DMD. We demonstrate the positive effects of catalpol in dystrophic skeletal muscle.


Activation of Sirt1/FXR Signaling Pathway Attenuates Triptolide-Induced Hepatotoxicity in Rats.

  • Jing Yang‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

Triptolide (TP), a diterpenoid isolated from Tripterygium wilfordii Hook F, has an excellent pharmacological profile of immunosuppression and anti-tumor activities, but its clinical applications are severely restricted due to its severe and cumulative toxicities. The farnesoid X receptor (FXR) is the master bile acid nuclear receptor and plays an important role in maintaining hepatic metabolism homeostasis. Hepatic Sirtuin (Sirt1) is a key regulator of the FXR signaling pathway and hepatic metabolism homeostasis. The aims of this study were to determine whether Sirt1/FXR signaling pathway plays a critical role in TP-induced hepatotoxicity. Our study revealed that the intragastric administration of TP (400 μg/kg body weight) for 28 consecutive days increased bile acid accumulation, suppressed hepatic gluconeogenesis in rats. The expression of bile acid transporter BSEP was significantly reduced and cholesterol 7α-hydroxylase (CYP7A1) was markedly increased in the TP-treated group, whereas the genes responsible for hepatic gluconeogenesis were suppressed in the TP-treated group. TP also modulated the FXR and Sirt1 by decreasing its expression both in vitro and in vivo. The Sirt1 agonist SRT1720 and the FXR agonist obeticholic acid (OCA) were used both in vivo and in vitro. The remarkable liver damage induced by TP was attenuated by treatment with either SRT1720 or OCA, as reflected by decreased levels of serum total bile acids and alkaline phosphatase and increased glucose levels. Meanwhile, SRT1720 significantly alleviated TP-induced FXR suppression and FXR-targets involved in hepatic lipid and glucose metabolism. Based on these results, we conclude that Sirt1/FXR inactivation plays a critical role in TP-induced hepatotoxicity. Moreover, Sirt1/FXR axis represents a novel therapeutic target that could potentially ameliorate TP-induced hepatotoxicity.


Selective-cerebral-hypothermia-induced neuroprotection against-focal cerebral ischemia/reperfusion injury is associated with an increase in SUMO2/3 conjugation.

  • Guiliang Sun‎ et al.
  • Brain research‎
  • 2021‎

Selective cerebral hypothermia is considered an effective treatment for neuronal injury after stroke and avoids the complications of general hypothermia. Several recent studies hanve suggested that SUMO2/3 conjugation occurs following cerebral ischemia/reperfusion (I/R) injury. However, the relationship between the cerebral protective effect of selective cerebral hypothermia and SUMO2/3 conjugation remains unclear. In this study, we investigated the effect of selective cerebral hypothermia on SUMO2/3 conjugation during focal cerebral I/R injury. A total of 140 Sprague-Dawley rats were divided into four groups. In the sham group, only the carotid artery was exposed. The endoluminal filament technique was used to induce middle cerebral artery occlusion in the other three groups. After 2 h of occlusion, the filaments were slowly removed to allow blood reperfusion in the I/R group. In the hypothermia (HT) group and normothermia (NT) group, normal saline at 4 °C and 37 °C, respectively , was perfused through the carotid artery, followed by the restoration of blood flow. The results of the modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining demonstrated that selective cerebral hypothermia significantly decreased I/R-induced neuronal injury (mNSS, n = 8, 24 h, HT (5.88 ± 2.36) vs. I/R (8.63 ± 3.38), P < 0.05. 48 h, HT (5.75 ± 2.25) vs. I/R (8.5 ± 2.88), P < 0.05. Cerebral infarct volume percentages, n = 5, HT (18.71 ± 2.13) vs. I/R (41.52 ± 2.90), P < 0.01. Cell apoptosis rate, n = 5, 24 h, HT (21.28 ± 2.61) vs. I/R (43.72 ± 4.30), P < 0.05. 48 h, HT (20.50 ± 2.53) vs. I/R (38.94 ± 2.93), P < 0.05). The expression of Ubc9 and conjugated SUMO2/3 proteins was increased at 24 and 48 h after reperfusion in the 3 non-sham groups, and hypothermia further upregulated the expression of Ubc9 and conjugated SUMO2/3 proteins in the HT group. The expression of SENP3 was increased in the NT group and I/R group, while it was decreased in the HT group at 24 and 48 h after reperfusion (Relative quantities, n = 5, Ubc9, 24 h, HT (2.44 ± 0.22) vs. I/R (1.55 ± 0.39), P < 0.05. 48 h, HT (2.69 ± 0.16) vs. I/R (2.25 ± 0.33), P < 0.05. SENP3, 24 h, HT (0.47 ± 0.15) vs. I/R (2.18 ± 0.43), P < 0.05. 48 h, HT (0.72 ± 0.06) vs. I/R (1.51 ± 0.19), P < 0.05. conjugated SUMO2/3 proteins, 24 h, HT (2.84 ± 0.24) vs. I/R (2.51 ± 0.20), P < 0.05. 48 h, HT (2.73 ± 0.13) vs. I/R (2.44 ± 0.13), P < 0.05). Further analysis showed that the variation in SENP3 expression was more obvious than that in Ubc9 under hypothermia intervention in the HT group. These findings suggest that selective cerebral hypothermia could increase SUMO2/3 modification mainly via down-regulating the expression of SENP3, and then exert neuroprotective effects in rats with cerebral I/R injury.


LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients.

  • Jin Zhang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Tumor recurrence, the chief reason for poor prognosis of glioma, is largely attributed to glioma stem cells (GSCs) and epithelial-mesenchymal transition (EMT). However, the mechanisms among them remain unknown. Here, we determined whether leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), known as a stem cell marker for colon cancer and gastric cancer, can serve as a novel GSC marker involved in EMT and a therapeutic target in glioma.


TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging.

  • Daichao Xu‎ et al.
  • Cell‎
  • 2018‎

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver.

  • Tingting Yang‎ et al.
  • Toxicology letters‎
  • 2020‎

Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.


Solidification of volatile D-Limonene by cyclodextrin metal-organic framework for pulmonary delivery via dry powder inhalers: In vitro and in vivo evaluation.

  • Yong Zhou‎ et al.
  • International journal of pharmaceutics‎
  • 2021‎

D-Limonene (D-Lim), a volatile oil extracted from citrus fruits, has therapeutic effects on lung inflammation and cancer, whilst the deep delivery of D-Lim was challenging due to its physical instability for a long period of time. To prevent the volatilization of D-Lim and achieve efficient pulmonary delivery, herein, D-Lim was loaded into biodegradable γ-cyclodextrin metal-organic framework (γ-CD-MOF) with optimal loading efficiency achieving 13.79 ± 0.01% (molar ratio of D-Lim and γ-CD-MOF was 1.6:1), which possessed cubic shape with controllable particle size (1-5 μm). The experimental results indicated that γ-CD-MOF could improve the stability of D-Lim. A series of characterizations and molecular docking were used to reveal the interaction between D-Lim and γ-CD-MOF. The solidification of D-Lim by γ-CD-MOF played a crucial role in the exploitation of its inhalable dosage form, dry powder inhaler (DPI). Specifically, the aerosolization of D-Lim@γ-CD-MOF for inhalation was satisfactory with a fine particle fraction (FPF) of 33.12 ± 1.50% at 65 L/min of flow rate. Furthermore, in vivo study had shown a 2.23-fold increase in bioavailability of D-Lim solidified by γ-CD-MOF for inhalation compared to D-Lim for oral administration. Therefore, it is considered that γ-CD-MOF could be an excellent carrier for pulmonary drug delivery to realize solidification and lung therapeutic effects of volatile oils.


Subjective Cognitive Decline May Be Associated With Post-operative Delirium in Patients Undergoing Total Hip Replacement: The PNDABLE Study.

  • Xu Lin‎ et al.
  • Frontiers in aging neuroscience‎
  • 2021‎

Objective: Subjective cognitive decline (SCD) is associated with an increased risk of clinical cognitive disorders. Post-operative delirium (POD) is a common complication after total hip replacement. We aimed to investigate the relationship between SCD and POD in patients undergoing total hip replacement. Methods: Our study recruited 214 cognitively intact individuals from the Perioperative Neurocognitive Disorder And Biomarker Lifestyle (PNDABLE) study in the final analysis. SCD was diagnosed with Subjective Cognitive Decline Scale (SCDS), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA). The incidence of POD was evaluated by using Confusion Assessment Method (CAM), and POD severity was measured by using the Memorial Delirium Assessment Scale (MDAS). Preoperative cerebrospinal fluid (CSF) Aβ40, Aβ42, T-tau, and P-tau levels were measured by enzyme-linked immune-sorbent assay (ELISA). Results: Overall, the incidence of POD was 26.64% (57/214), including 32.43% (36/111) in the SCD group and 20.39% (21/103) in the NC group. With the increase of age, the incidence of POD in all age groups increased (P < 0.05). Logistic regression analysis showed that after adjusting for SCD, Aβ42, Aβ40, P-tau, and T-tau, SCD (OR 2.32, CI 1.18-4.55, P = 0.01) and the increased CSF level of P-tau (OR 1.04, CI 1.01-1.06, P < 0.001) were risk factors for POD, while the level of aβ42 (OR 0.99, CI 0.99-1.00, P < 0.001) was a protective factor for POD. Conclusion: SCD is one of the preoperative risk factors for POD. Clinical Trial Registration: This study was registered at China Clinical Trial Registry (Chictr200033439).


Deficiency of Perry syndrome-associated p150Glued in midbrain dopaminergic neurons leads to progressive neurodegeneration and endoplasmic reticulum abnormalities.

  • Jia Yu‎ et al.
  • NPJ Parkinson's disease‎
  • 2023‎

Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.


Differential urine proteome analysis of a ventilator-induced lung injury rat model by label-free quantitative and parallel reaction monitoring proteomics.

  • Weiwei Qin‎ et al.
  • Scientific reports‎
  • 2021‎

Urine is a promising resource for biomarker research. Therefore, the purpose of this study was to investigate potential urinary biomarkers to monitor the disease activity of ventilator-induced lung injury (VILI). In the discovery phase, a label-free data-dependent acquisition (DDA) quantitative proteomics method was used to profile the urinary proteomes of VILI rats. For further validation, the differential proteins were verified by parallel reaction monitoring (PRM)-targeted quantitative proteomics. In total, 727 high-confidence proteins were identified with at least 1 unique peptide (FDR ≤ 1%). Compared to the control group, 110 proteins (65 upregulated, 45 downregulated) were significantly changed in the VILI group (1.5-fold change, P < 0.05). The canonical pathways and protein-protein interaction analyses revealed that the differentially expressed proteins were enriched in multiple functions, including oxidative stress and inflammatory responses. Finally, thirteen proteins were identified as candidate biomarkers for VILI by PRM validation. Among these PRM-validated proteins, AMPN, MEP1B, LYSC1, DPP4 and CYC were previously reported as lung-associated disease biomarkers. SLC31, MEP1A, S15A2, NHRF1, XPP2, GGT1, HEXA, and ATPB were newly discovered in this study. Our results suggest that the urinary proteome might reflect the pathophysiological changes associated with VILI. These differential proteins are potential urinary biomarkers for the activity of VILI.


Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer's disease.

  • Chengyu Zou‎ et al.
  • Acta neuropathologica‎
  • 2015‎

Alzheimer's disease (AD) is thought to be caused by accumulation of amyloid-β protein (Aβ), which is a cleavage product of amyloid precursor protein (APP). Transgenic mice overexpressing APP have been used to recapitulate amyloid-β pathology. Among them, APP23 and APPswe/PS1deltaE9 (deltaE9) mice are extensively studied. APP23 mice express APP with Swedish mutation and develop amyloid plaques late in their life, while cognitive deficits are observed in young age. In contrast, deltaE9 mice with mutant APP and mutant presenilin-1 develop amyloid plaques early but show typical cognitive deficits in old age. To unveil the reasons for different progressions of cognitive decline in these commonly used mouse models, we analyzed the number and turnover of dendritic spines as important structural correlates for learning and memory. Chronic in vivo two-photon imaging in apical tufts of layer V pyramidal neurons revealed a decreased spine density in 4-5-month-old APP23 mice. In age-matched deltaE9 mice, in contrast, spine loss was only observed on cortical dendrites that were in close proximity to amyloid plaques. In both cases, the reduced spine density was caused by decreased spine formation. Interestingly, the patterns of alterations in spine morphology differed between these two transgenic mouse models. Moreover, in APP23 mice, APP was found to accumulate intracellularly and its content was inversely correlated with the absolute spine density and the relative number of mushroom spines. Collectively, our results suggest that different pathological mechanisms, namely an intracellular accumulation of APP or extracellular amyloid plaques, may lead to spine abnormalities in young adult APP23 and deltaE9 mice, respectively. These distinct features, which may represent very different mechanisms of synaptic failure in AD, have to be taken into consideration when translating results from animal studies to the human disease.


Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson's disease.

  • Vincenza Bagetta‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2012‎

Dopamine replacement with levodopa (L-DOPA) represents the mainstay of Parkinson’s disease (PD) therapy. Nevertheless, this well established therapeutic intervention loses efficacy with the progression of the disease and patients develop invalidating side effects, known in their complex as L-DOPA-induced dyskinesia (LID). Unfortunately, existing therapies fail to prevent LID and very few drugs are available to lessen its severity, thus representing a major clinical problem inPDtreatment. D2-like receptor (D2R) agonists are a powerful clinical option as an alternative to L-DOPA, especially in the early stages of the disease, being associated to a reduced risk of dyskinesia development. D2R agonists also find considerable application in the advanced stages of PD, in conjunction with L-DOPA, which is used in this context at lower dosages, to delay the appearance and the extent of the motor complications. In advanced stages of PD, D2R agonists are often effective in delaying the appearance and the extent of motor complications. Despite the great attention paid to the family of D2R agonists, the main reasons underlying the reduced risk of dyskinesia have not yet been fully characterized. Here we show that the striatal NMDA/AMPAreceptor ratio and theAMPAreceptor subunit composition are altered in experimental parkinsonism in rats. Surprisingly, while L-DOPA fails to restore these critical synaptic alterations, chronic treatment with pramipexole is associated not only with a reduced risk of dyskinesia development but is also able to rebalance, in a dose-dependent fashion, the physiological synaptic parameters, thus providing new insights into the mechanisms of dyskinesia.


Analysis of Risk Factors for Multiantibiotic-Resistant Infections Among Surgical Patients at a Children's Hospital.

  • Lixin Sun‎ et al.
  • Microbial drug resistance (Larchmont, N.Y.)‎
  • 2019‎

To identify the potential risk factors for multiantibiotic-resistant infections and provide sufficient evidence for multiantibiotic resistance prevention and control.


A new perspective of triptolide-associated hepatotoxicity: Liver hypersensitivity upon LPS stimulation.

  • Ziqiao Yuan‎ et al.
  • Toxicology‎
  • 2019‎

This study was designed to investigate whether the mice treated with triptolide (TP) could disrupt the liver immune homeostasis, resulting in the inability of the liver to eliminate the harmful response induced by lipopolysaccharide (LPS). In addition, we explored whether apoptosis and necroptosis played a critical role in the progression of the hepatotoxicity induced by TP-LPS co-treatment.


Aldehyde dehydrogenase 1-positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum.

  • Carmelo Sgobio‎ et al.
  • Scientific reports‎
  • 2017‎

Aldehyde dehydrogenase 1 (ALDH1A1)-positive dopaminergic (DA) neurons at the ventral substantia nigra pars compacta (SNpc) preferentially degenerate in Parkinson's disease (PD). Their projection pattern and dopamine release properties, however, remains uncharacterized. Here we show that ALDH1A1-positive axons project predominantly to the rostral two-thirds of dorsal striatum. A portion of these axons converge on a small fraction of striosome compartments restricted to the dorsolateral striatum (DLS), where less dopamine release was measured compared to the adjacent matrix enriched with the ALDH1A1-negative axons. Genetic ablation of Aldh1a1 substantially increases the dopamine release in striosomes, but not in matrix. Additionally, the presence of PD-related human α-synuclein A53T mutant or dopamine transporter (DAT) blockers also differentially affects the dopamine output in striosomes and matrix. Together, these results demonstrate distinct dopamine release characteristics of ALDH1A1-positive DA fibers, supporting a regional specific function of ALDH1A1 in regulating dopamine availability/release in striatum.


Palm dermatoglyphs and interleukin-4 receptor polymorphisms in asthma.

  • Lixin Sun‎ et al.
  • Biomedical reports‎
  • 2017‎

Single nucleotide polymorphisms (SNPs) in the interleukin-4 receptor (IL-4R) gene have been identified as having a close association with asthma severity in different populations. In our previous studies, a close association between asthma and a distinctive palm dermatoglyphic pattern was observed; however, the clinical implication and underlying genetic mechanisms of this particular palm pattern have not been clarified. Whether this particular palm pattern is associated with asthma severity and IL-4R SNPs was assessed in the present study. A case cohort study was conducted in 400 patients with allergic asthma and in 200 healthy controls. DNA was extracted from peripheral blood leukocytes for analysis of 11 IL-4R SNPs associated with asthma via polymerase chain reaction. There are two SNPs, rs1805012 and rs3024608, which are associated with asthma (rs1805012, dominant model; P=0.03 and rs3024608, codominant model; P=0.029), and two SNPs, rs1805010 and rs3024608, which are associated with the positive palm pattern (rs1805010, log-additive model; P=0.031 and rs3024608, codominant model; P=0.016). The SNP of rs3024608 is associated with asthma and the positive palm pattern. Thus, genetic variation in IL-4R may be associated with the development of asthma and the distinctive palm pattern; however, further investigations are required to identify the connection between asthma and palm dermatoglyphic patterns.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: