Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 138 papers

Akt regulates drug-induced cell death through Bcl-w downregulation.

  • Michela Garofalo‎ et al.
  • PloS one‎
  • 2008‎

Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.


RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model.

  • Tae Jin Lee‎ et al.
  • Oncotarget‎
  • 2015‎

Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues.


microRNA expression profiling identifies a four microRNA signature as a novel diagnostic and prognostic biomarker in triple negative breast cancers.

  • Pierluigi Gasparini‎ et al.
  • Oncotarget‎
  • 2014‎

Triple Negative Breast Cancers (TNBC) is a heterogeneous disease at the molecular and clinical level with poor outcome. Molecular subclassification of TNBCs is essential for optimal use of current therapies and for development of new drugs. microRNAs (miRNA) are widely recognized as key players in cancer progression and drug resistance; investigation of their involvement in a TNBC cohort may reveal biomarkers for diagnosis and prognosis of TNBC. Here we stratified a large TNBC cohort into Core Basal (CB, EGFR and/or CK5, 6 positive) and five negative (5NP) if all markers are negative. We determined the complete miRNA expression profile and found a subset of miRNAs specifically deregulated in the two subclasses.We identified a 4-miRNA signature given by miR-155, miR-493, miR-30e and miR-27a expression levels, that allowed subdivision of TNBCs not only into CB and 5NP subgroups (sensitivity 0.75 and specificity 0.56; AUC=0.74) but also into high risk and low risk groups. We tested the diagnostic and prognostic performances of both the 5 IHC marker panel and the 4-miRNA expression signatures, which clearly identify worse outcome patients in the treated and untreated subcohorts. Both signatures have diagnostic and prognostic value, predicting outcomes of patient treatment with the two most commonly used chemotherapy regimens in TNBC: anthracycline or anthracycline plus taxanes. Further investigations of the patients’ overall survival treated with these regimens show that regardless of IHC group subdivision, taxanes addition did not benefit patients, possibly due to miRNA driven taxanes resistance. TNBC subclassification based on the 5 IHC markers and on the miR-155, miR-493, miR-30e, miR-27a expression levels are powerful diagnostic tools. Treatment choice and new drug development should consider this new subtyping and miRNA expression signature in planning low toxicity, maximum efficacy therapies.


microRNA-mediated survivin control of pluripotency.

  • Kristina Kapinas‎ et al.
  • Journal of cellular physiology‎
  • 2015‎

Understanding the mechanisms that sustain pluripotency in human embryonic stem cells (hESCs) is an active area of research that may prove useful in regenerative medicine and will provide fundamental information relevant to development and cancer. hESCs and cancer cells share the unique ability to proliferate indefinitely and rapidly. Because the protein survivin is uniquely overexpressed in virtually all human cancers and in hESCs, we sought to investigate its role in supporting the distinctive capabilities of these cell types. Results presented here suggest that survivin contributes to the maintenance of pluripotency and that post-transcriptional control of survivin isoform expression is selectively regulated by microRNAs. miR-203 has been extensively studied in human tumors, but has not been characterized in hESCs. We show that miR-203 expression and activity is consistent with the expression and subcellular localization of survivin isoforms that in turn modulate expression of the Oct4 and Nanog transcription factors to sustain pluripotency. This study contributes to understanding of the complex regulatory mechanisms that govern whether hESCs proliferate or commit to lineages.


Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers.

  • Pietro Carotenuto‎ et al.
  • Gut‎
  • 2017‎

Transcribed-ultraconserved regions (T-UCR) are long non-coding RNAs which are conserved across species and are involved in carcinogenesis. We studied T-UCRs downstream of the Wnt/β-catenin pathway in liver cancer.


MicroRNA 193b-3p as a predictive biomarker of chronic kidney disease in patients undergoing radical nephrectomy for renal cell carcinoma.

  • Francesco Trevisani‎ et al.
  • British journal of cancer‎
  • 2016‎

A significant proportion of patients undergoing radical nephrectomy (RN) for clear-cell renal cell carcinoma (RCC) develop chronic kidney disease (CKD) within a few years following surgery. Chronic kidney disease has important health, social and economic impact and no predictive biomarkers are currently available. MicroRNAs (miRs) are small non-coding RNAs implicated in several pathological processes.


MiR-34a/c-Dependent PDGFR-α/β Downregulation Inhibits Tumorigenesis and Enhances TRAIL-Induced Apoptosis in Lung Cancer.

  • Michela Garofalo‎ et al.
  • PloS one‎
  • 2013‎

Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells.


miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response.

  • Alessandra Cataldo‎ et al.
  • Oncotarget‎
  • 2016‎

The identification of the molecular mechanisms involved in the establishment of the resistant phenotype represents a critical need for the development of new strategies to prevent or overcome cancer resistance to anti-neoplastic treatments.Breast cancer is the leading cause of cancer-related deaths in women, and resistance to chemotherapy negatively affects patient outcomes. Here, we investigated the potential role of miR-302b in the modulation of breast cancer cell resistance to cisplatin.miR-302b overexpression enhances sensitivity to cisplatin in breast cancer cell lines, reducing cell viability and proliferation in response to the treatment. We also identified E2F1, a master regulator of the G1/S transition, as a direct target gene of miR-302b. E2F1 transcriptionally activates ATM, the main cellular sensor of DNA damage. Through the negative regulation of E2F1, miR-302b indirectly affects ATM expression, abrogating cell-cycle progression upon cisplatin treatment. Moreover miR-302b, impairs the ability of breast cancer cells to repair damaged DNA, enhancing apoptosis activation following cisplatin treatment.These findings indicate that miR-302b plays a relevant role in breast cancer cell response to cisplatin through the modulation of the E2F1/ATM axis, representing a valid candidate as therapeutic tool to overcome chemotherapy resistance.


Quaking and miR-155 interactions in inflammation and leukemogenesis.

  • Esmerina Tili‎ et al.
  • Oncotarget‎
  • 2015‎

Quaking (QKI) is a tumor-suppressor gene encoding a conserved RNA-binding protein, whose expression is downregulated in several solid tumors. Here we report that QKI plays an important role in the immune response and suppression of leukemogenesis. We show that the expression of Qki is reduced in lipopolysaccharide (LPS)-challenged macrophages, suggesting that Qki is a key regulator of LPS signaling pathway. Furthermore, LPS-induced downregulation of Qki expression is miR-155-dependent. Qki overexpression impairs LPS-induced phosphorylation of JNK and particularly p38 MAPKs, in addition to increasing the production of anti-inflammatory cytokine IL-10. In contrast, Qki ablation decreases Fas expression and the rate of Caspase3/7 activity, while increasing the levels of IL-1α, IL-1β and IL-6, and p38 phosphorylation. Similarly, the p38 pathway is also a target of QKI activity in chronic lymphocytic leukemia (CLL)-derived MEC2 cells. Finally, B-CLL patients show lower levels of QKI expression compared with B cells from healthy donor, and Qki is similarily downregulated with the progression of leukemia in Eµ-miR-155 transgenic mice. Altogether, these data implicate QKI in the pathophysiology of inflammation and oncogenesis where miR-155 is involved.


FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype.

  • Sangwoon Chung‎ et al.
  • Oncotarget‎
  • 2016‎

Inflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated. Growing evidences indicate that FoxO1 acts as an upstream regulator of IRF4 and could have a role in a specific inflammatory phenotype of macrophages. Therefore, we hypothesized that IRF4 expression regulated by FoxO1 in alveolar macrophages is required for established type 2 immune mediates allergic lung inflammation. Our data indicate that targeted deletion of FoxO1 using FoxO1-selective inhibitor AS1842856 and genetic ablation of FoxO1 in macrophages significantly decreases IRF4 and various M2 macrophage-associated genes, suggesting a mechanism that involves FoxO1-IRF4 signaling in alveolar macrophages that works to polarize macrophages toward established type 2 immune responses. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, macrophage specific FoxO1 overexpression is associated with an accentuation of asthmatic lung inflammation, whereas pharmacologic inhibition of FoxO1 by AS1842856 attenuates the development of asthmatic lung inflammation. Thus, our study identifies a role for FoxO1-IRF4 signaling in the development of alternatively activated alveolar macrophages that contribute to type 2 allergic airway inflammation.


MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer.

  • Robert S Hudson‎ et al.
  • Nucleic acids research‎
  • 2012‎

We previously reported that miR-1 is among the most consistently down-regulated miRs in primary human prostate tumors. In this follow-up study, we further corroborated this finding in an independent data set and made the novel observation that miR-1 expression is further reduced in distant metastasis and is a candidate predictor of disease recurrence. Moreover, we performed in vitro experiments to explore the tumor suppressor function of miR-1. Cell-based assays showed that miR-1 is epigenetically silenced in human prostate cancer. Overexpression of miR-1 in these cells led to growth inhibition and down-regulation of genes in pathways regulating cell cycle progression, mitosis, DNA replication/repair and actin dynamics. This observation was further corroborated with protein expression analysis and 3'-UTR-based reporter assays, indicating that genes in these pathways are either direct or indirect targets of miR-1. A gene set enrichment analysis revealed that the miR-1-mediated tumor suppressor effects are globally similar to those of histone deacetylase inhibitors. Lastly, we obtained preliminary evidence that miR-1 alters the cellular organization of F-actin and inhibits tumor cell invasion and filipodia formation. In conclusion, our findings indicate that miR-1 acts as a tumor suppressor in prostate cancer by influencing multiple cancer-related processes and by inhibiting cell proliferation and motility.


Loss of miR-204 expression is a key event in melanoma.

  • Marco Galasso‎ et al.
  • Molecular cancer‎
  • 2018‎

Cutaneous melanoma (CM) is a malignancy with increasing occurrence. Its microRNA repertoire has been defined in a number studies, leading to candidates for biological and clinical relevance: miR-200a/b/c, miR-203, miR-205, miR-204, miR-211, miR-23b and miR-26a/b. Our work was aimed to validate the role of these candidate miRNAs in melanoma, using additional patients cohorts and in vitro cultures. miR-26a, miR-204 and miR-211 were more expressed in normal melanocytes, while miR-23b, miR-200b/c, miR-203 and miR-205 in epidermis and keratinocytes. None of the keratinocyte-related miRNAs was associated with any known mutation or with clinical covariates in melanoma. On the other hand, the loss of miR-204 was enriched in melanomas with NRAS sole mutation (Fisher exact test, P = 0.001, Log Odds = 1.67), and less frequent than expected in those harbouring CDKN2A mutations (Fisher exact test, P = 0.001, Log Odds - 1.09). Additionally, miR-204 was associated with better prognosis in two independent melanoma cohorts and its exogenous expression led to growth impairment in melanoma cell lines. Thus, miR-204 represents a relevant mechanism in melanoma, with potential prognostic value and its loss seems to act in the CDKN2A pathway, in cooperation with NRAS.


Discovery and characterization of the feline miRNAome.

  • Alessandro Laganà‎ et al.
  • Scientific reports‎
  • 2017‎

The domestic cat is an important human companion animal that can also serve as a relevant model for ~250 genetic diseases, many metabolic and degenerative conditions, and forms of cancer that are analogous to human disorders. MicroRNAs (miRNAs) play a crucial role in many biological processes and their dysregulation has a significant impact on important cellular pathways and is linked to a variety of diseases. While many species already have a well-defined and characterized miRNAome, miRNAs have not been carefully studied in cats. As a result, there are no feline miRNAs present in the reference miRNA databases, diminishing the usefulness of medical research on spontaneous disease in cats for applicability to both feline and human disease. This study was undertaken to define and characterize the cat miRNAome in normal feline tissues. High-throughput sequencing was performed on 12 different normal cat tissues. 271 candidate feline miRNA precursors, encoding a total of 475 mature sequences, were identified, including several novel cat-specific miRNAs. Several analyses were performed to characterize the discovered miRNAs, including tissue distribution of the precursors and mature sequences, genomic distribution of miRNA genes and identification of clusters, and isomiR characterization. Many of the miRNAs were regulated in a tissue/organ-specific manner.


Determination of absolute expression profiles using multiplexed miRNA analysis.

  • Yunke Song‎ et al.
  • PloS one‎
  • 2017‎

Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR's ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes.


BET bromodomain inhibitor birabresib in mantle cell lymphoma: in vivo activity and identification of novel combinations to overcome adaptive resistance.

  • Chiara Tarantelli‎ et al.
  • ESMO open‎
  • 2018‎

The outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials.


Characterization of GECPAR, a noncoding RNA that regulates the transcriptional program of diffuse large B-cell lymphoma.

  • Sara Napoli‎ et al.
  • Haematologica‎
  • 2022‎

Enhancers are regulatory regions of DNA, which play a key role in cell-type specific differentiation and development. Most active enhancers are transcribed into enhancer RNA (eRNA) that can regulate transcription of target genes by means of in cis as well as in trans action. eRNA stabilize contacts between distal genomic regions and mediate the interaction of DNA with master transcription factors. Here, we characterized an enhancer eRNA, GECPAR (germinal center proliferative adapter RNA), which is specifically transcribed in normal and neoplastic germinal center B cells from the super-enhancer of POU2AF1, a key regulatory gene of the germinal center reaction. Using diffuse large B-cell lymphoma cell line models, we demonstrated the tumor suppressor activity of GECPAR, which is mediated via its transcriptional regulation of proliferation and differentiation genes, particularly MYC and the Wnt pathway.


RNAdetector: a free user-friendly stand-alone and cloud-based system for RNA-Seq data analysis.

  • Alessandro La Ferlita‎ et al.
  • BMC bioinformatics‎
  • 2021‎

RNA-Seq is a well-established technology extensively used for transcriptome profiling, allowing the analysis of coding and non-coding RNA molecules. However, this technology produces a vast amount of data requiring sophisticated computational approaches for their analysis than other traditional technologies such as Real-Time PCR or microarrays, strongly discouraging non-expert users. For this reason, dozens of pipelines have been deployed for the analysis of RNA-Seq data. Although interesting, these present several limitations and their usage require a technical background, which may be uncommon in small research laboratories. Therefore, the application of these technologies in such contexts is still limited and causes a clear bottleneck in knowledge advancement.


MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies.

  • Taewan Kim‎ et al.
  • Experimental & molecular medicine‎
  • 2023‎

As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.


MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression.

  • Taewan Kim‎ et al.
  • Oncotarget‎
  • 2015‎

The transcription factor MYC is a proto-oncogene regulating cell proliferation, cell cycle, apoptosis and metabolism. The recent identification of MYC-regulated long noncoding RNAs (lncRNAs) expands our knowledge of the role of lncRNAs in MYC functions. Here, we identify MYC-repressed lncRNAs named MYCLo-4, -5 and -6 by comparing 3 categories of lncRNAs (downregulated in highly MYC-expressing colorectal cancer, up-regulated by MYC knockdown in HCT116, upregulated by MYC knockdown in RKO). The MYC-repressed MYCLos are implicated in MYC-modulated cell proliferation through cell cycle regulation. By screening cell cycle-related genes regulated by MYC and the MYC-repressed MYCLos, we identified the MYC-repressed gene GADD45A as a target gene of the MYC-repressed MYCLos such as MYCLo-4 and MYCLo-6.


DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features.

  • Alberto J Arribas‎ et al.
  • Blood‎
  • 2015‎

Splenic marginal zone lymphoma is a rare lymphoma. Loss of 7q31 and somatic mutations affecting the NOTCH2 and KLF2 genes are the commonest genomic aberrations. Epigenetic changes can be pharmacologically reverted; therefore, identification of groups of patients with specific epigenomic alterations might have therapeutic relevance. Here we integrated genome-wide DNA-promoter methylation profiling with gene expression profiling, and clinical and biological variables. An unsupervised clustering analysis of a test series of 98 samples identified 2 clusters with different degrees of promoter methylation. The cluster comprising samples with higher-promoter methylation (High-M) had a poorer overall survival compared with the lower (Low-M) cluster. The prognostic relevance of the High-M phenotype was confirmed in an independent validation set of 36 patients. In the whole series, the High-M phenotype was associated with IGHV1-02 usage, mutations of NOTCH2 gene, 7q31-32 loss, and histologic transformation. In the High-M set, a number of tumor-suppressor genes were methylated and repressed. PRC2 subunit genes and several prosurvival lymphoma genes were unmethylated and overexpressed. A model based on the methylation of 3 genes (CACNB2, HTRA1, KLF4) identified a poorer-outcome patient subset. Exposure of splenic marginal zone lymphoma cell lines to a demethylating agent caused partial reversion of the High-M phenotype and inhibition of proliferation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: