Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa.

  • Carl Procko‎ et al.
  • Plant physiology‎
  • 2014‎

Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.


Leaf cell-specific and single-cell transcriptional profiling reveals a role for the palisade layer in UV light protection.

  • Carl Procko‎ et al.
  • The Plant cell‎
  • 2022‎

Like other complex multicellular organisms, plants are composed of different cell types with specialized shapes and functions. For example, most laminar leaves consist of multiple photosynthetic cell types. These cell types include the palisade mesophyll, which typically forms one or more cell layers on the adaxial side of the leaf. Despite their importance for photosynthesis, we know little about how palisade cells differ at the molecular level from other photosynthetic cell types. To this end, we have used a combination of cell-specific profiling using fluorescence-activated cell sorting and single-cell RNA-sequencing methods to generate a transcriptional blueprint of the palisade mesophyll in Arabidopsis thaliana leaves. We find that despite their unique morphology, palisade cells are otherwise transcriptionally similar to other photosynthetic cell types. Nevertheless, we show that some genes in the phenylpropanoid biosynthesis pathway have both palisade-enriched expression and are light-regulated. Phenylpropanoid gene activity in the palisade was required for production of the ultraviolet (UV)-B protectant sinapoylmalate, which may protect the palisade and/or other leaf cells against damaging UV light. These findings improve our understanding of how different photosynthetic cell types in the leaf can function uniquely to optimize leaf performance, despite their transcriptional similarities.


Well-free agglomeration and on-demand three-dimensional cell cluster formation using guided surface acoustic waves through a couplant layer.

  • Jiyang Mei‎ et al.
  • Biomedical microdevices‎
  • 2022‎

Three-dimensional cell agglomerates are broadly useful in tissue engineering and drug testing. We report a well-free method to form large (1.4-mm) multicellular clusters using 100-MHz surface acoustic waves (SAW) without direct contact with the media or cells. A fluid couplant is used to transform the SAW into acoustic streaming in the cell-laden media held in a petri dish. The couplant transmits longitudinal sound waves, forming a Lamb wave in the petri dish that, in turn, produces longitudinal sound in the media. Due to recirculation, human embryonic kidney (HEK293) cells in the dish are carried to the center of the coupling location, forming a cluster in less than 10 min. A few minutes later, these clusters may then be translated and merged to form large agglomerations, and even repeatedly folded to produce a roughly spherical shape of over 1.4 mm in diameter for incubation-without damaging the existing intercellular bonds. Calcium ion signaling through these clusters and confocal images of multiprotein junctional complexes suggest a continuous tissue construct: intercellular communication. They may be formed at will, and the method is feasibly useful for formation of numerous agglomerates in a single petri dish.


Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans.

  • Sarah G Leinwand‎ et al.
  • Nature neuroscience‎
  • 2013‎

Neural circuits detect environmental changes and drive behavior. The routes of information flow through dense neural networks are dynamic, but the mechanisms underlying this circuit flexibility are poorly understood. Here, we define a sensory context-dependent and neuropeptide-regulated switch in the composition of a C. elegans salt sensory circuit. The primary salt detectors, ASE sensory neurons, used BLI-4 endoprotease-dependent cleavage to release the insulin-like peptide INS-6 in response to large, but not small, changes in external salt stimuli. Insulins, signaling through the insulin receptor DAF-2, functionally switched the AWC olfactory sensory neuron into an interneuron in the salt circuit. Worms with disrupted insulin signaling had deficits in salt attraction, suggesting that peptidergic signaling potentiates responses to high salt stimuli, which may promote ion homeostasis. Our results indicate that sensory context and neuropeptide signaling modify neural networks and suggest general mechanisms for generating flexible behavioral outputs by modulating neural circuit composition.


Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous Droseraceae plants.

  • Carl Procko‎ et al.
  • eLife‎
  • 2021‎

In response to touch, some carnivorous plants such as the Venus flytrap have evolved spectacular movements to capture animals for nutrient acquisition. However, the molecules that confer this sensitivity remain unknown. We used comparative transcriptomics to show that expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in naïve cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral mechanosensitive ion channels to sense touch.


Neural network features distinguish chemosensory stimuli in Caenorhabditis elegans.

  • Javier J How‎ et al.
  • PLoS computational biology‎
  • 2021‎

Nervous systems extract and process information from the environment to alter animal behavior and physiology. Despite progress in understanding how different stimuli are represented by changes in neuronal activity, less is known about how they affect broader neural network properties. We developed a framework for using graph-theoretic features of neural network activity to predict ecologically relevant stimulus properties, in particular stimulus identity. We used the transparent nematode, Caenorhabditis elegans, with its small nervous system to define neural network features associated with various chemosensory stimuli. We first immobilized animals using a microfluidic device and exposed their noses to chemical stimuli while monitoring changes in neural activity of more than 50 neurons in the head region. We found that graph-theoretic features, which capture patterns of interactions between neurons, are modulated by stimulus identity. Further, we show that a simple machine learning classifier trained using graph-theoretic features alone, or in combination with neural activity features, can accurately predict salt stimulus. Moreover, by focusing on putative causal interactions between neurons, the graph-theoretic features were almost twice as predictive as the neural activity features. These results reveal that stimulus identity modulates the broad, network-level organization of the nervous system, and that graph theory can be used to characterize these changes.


Intestine-to-neuronal signaling alters risk-taking behaviors in food-deprived Caenorhabditis elegans.

  • Molly A Matty‎ et al.
  • PLoS genetics‎
  • 2022‎

Animals integrate changes in external and internal environments to generate behavior. While neural circuits detecting external cues have been mapped, less is known about how internal states like hunger are integrated into behavioral outputs. Here, we use the nematode C. elegans to examine how changes in internal nutritional status affect chemosensory behaviors. We show that acute food deprivation leads to a reversible decline in repellent, but not attractant, sensitivity. This behavioral change requires two conserved transcription factors MML-1 (MondoA) and HLH-30 (TFEB), both of which translocate from the intestinal nuclei to the cytoplasm during food deprivation. Next, we identify the insulin-like peptide INS-31 as a candidate ligand relaying food-status signals from the intestine to other tissues. Further, we show that neurons likely use the DAF-2 insulin receptor and AGE-1/PI-3 Kinase, but not DAF-16/FOXO to integrate these intestine-released peptides. Altogether, our study shows how internal food status signals are integrated by transcription factors and intestine-neuron signaling to generate flexible behaviors via the gut-brain axis.


Predator-secreted sulfolipids induce defensive responses in C. elegans.

  • Zheng Liu‎ et al.
  • Nature communications‎
  • 2018‎

Animals respond to predators by altering their behavior and physiological states, but the underlying signaling mechanisms are poorly understood. Using the interactions between Caenorhabditis elegans and its predator, Pristionchus pacificus, we show that neuronal perception by C. elegans of a predator-specific molecular signature induces instantaneous escape behavior and a prolonged reduction in oviposition. Chemical analysis revealed this predator-specific signature to consist of a class of sulfolipids, produced by a biochemical pathway required for developing predacious behavior and specifically induced by starvation. These sulfolipids are detected by four pairs of C. elegans amphid sensory neurons that act redundantly and recruit cyclic nucleotide-gated (CNG) or transient receptor potential (TRP) channels to drive both escape and reduced oviposition. Functional homology of the delineated signaling pathways and abolishment of predator-evoked C. elegans responses by the anti-anxiety drug sertraline suggests a likely conserved or convergent strategy for managing predator threats.


1-Undecene from Pseudomonas aeruginosa is an olfactory signal for flight-or-fight response in Caenorhabditis elegans.

  • Deep Prakash‎ et al.
  • The EMBO journal‎
  • 2021‎

Animals possess conserved mechanisms to detect pathogens and to improve survival in their presence by altering their own behavior and physiology. Here, we utilize Caenorhabditis elegans as a model host to ask whether bacterial volatiles constitute microbe-associated molecular patterns. Using gas chromatography-mass spectrometry, we identify six prominent volatiles released by the bacterium Pseudomonas aeruginosa. We show that a specific volatile, 1-undecene, activates nematode odor sensory neurons inducing both flight and fight responses in worms. Using behavioral assays, we show that worms are repelled by 1-undecene and that this aversion response is driven by the detection of this volatile through AWB odor sensory neurons. Furthermore, we find that 1-undecene odor can induce immune effectors specific to P. aeruginosa via AWB neurons and that brief pre-exposure of worms to the odor enhances their survival upon subsequent bacterial infection. These results show that 1-undecene derived from P. aeruginosa serves as a pathogen-associated molecular pattern for the induction of protective responses in C. elegans.


Dopamine signaling regulates predator-driven changes in Caenorhabditis elegans' egg laying behavior.

  • Amy Pribadi‎ et al.
  • eLife‎
  • 2023‎

Prey respond to predators by altering their behavior to optimize their own fitness and survival. Specifically, prey are known to avoid predator-occupied territories to reduce their risk of harm or injury to themselves and their progeny. We probe the interactions between Caenorhabditis elegans and its naturally cohabiting predator Pristionchus uniformis to reveal the pathways driving changes in prey behavior. While C. elegans prefers to lay its eggs on a bacteria food lawn, the presence of a predator inside a lawn induces C. elegans to lay more eggs away from that lawn. We confirm that this change in egg laying is in response to bites from predators, rather than to predatory secretions. Moreover, predator-exposed prey continue to lay their eggs away from the dense lawn even after the predator is removed, indicating a form of learning. Next, we find that mutants in dopamine synthesis significantly reduce egg laying behavior off the lawn in both predator-free and predator-inhabited lawns, which we can rescue by transgenic complementation or supplementation with exogenous dopamine. Moreover, we find that dopamine is likely released from multiple dopaminergic neurons and requires combinations of both D1- (DOP-1) and D2-like (DOP-2 and DOP-3) dopamine receptors to alter predator-induced egg laying behavior, whereas other combinations modify baseline levels of egg laying behavior. Together, we show that dopamine signaling can alter both predator-free and predator-induced foraging strategies, suggesting a role for this pathway in defensive behaviors.


Neural Mechanisms for Evaluating Environmental Variability in Caenorhabditis elegans.

  • Adam J Calhoun‎ et al.
  • Neuron‎
  • 2015‎

The ability to evaluate variability in the environment is vital for making optimal behavioral decisions. Here we show that Caenorhabditis elegans evaluates variability in its food environment and modifies its future behavior accordingly. We derive a behavioral model that reveals a critical period over which information about the food environment is acquired and predicts future search behavior. We also identify a pair of high-threshold sensory neurons that encode variability in food concentration and the downstream dopamine-dependent circuit that generates appropriate search behavior upon removal from food. Further, we show that CREB is required in a subset of interneurons and determines the timescale over which the variability is integrated. Interestingly, the variability circuit is a subset of a larger circuit driving search behavior, showing that learning directly modifies the very same neurons driving behavior. Our study reveals how a neural circuit decodes environmental variability to generate contextually appropriate decisions.


Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators.

  • Lin Tian‎ et al.
  • Nature methods‎
  • 2009‎

Genetically encoded calcium indicators (GECIs) can be used to image activity in defined neuronal populations. However, current GECIs produce inferior signals compared to synthetic indicators and recording electrodes, precluding detection of low firing rates. We developed a single-wavelength GCaMP2-based GECI (GCaMP3), with increased baseline fluorescence (3-fold), increased dynamic range (3-fold) and higher affinity for calcium (1.3-fold). We detected GCaMP3 fluorescence changes triggered by single action potentials in pyramidal cell dendrites, with signal-to-noise ratio and photostability substantially better than those of GCaMP2, D3cpVenus and TN-XXL. In Caenorhabditis elegans chemosensory neurons and the Drosophila melanogaster antennal lobe, sensory stimulation-evoked fluorescence responses were significantly enhanced with GCaMP3 (4-6-fold). In somatosensory and motor cortical neurons in the intact mouse, GCaMP3 detected calcium transients with amplitudes linearly dependent on action potential number. Long-term imaging in the motor cortex of behaving mice revealed large fluorescence changes in imaged neurons over months.


Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution.

  • Matthew S Joens‎ et al.
  • Scientific reports‎
  • 2013‎

Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.


Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels.

  • Marc Duque‎ et al.
  • Nature communications‎
  • 2022‎

Ultrasound has been used to non-invasively manipulate neuronal functions in humans and other animals. However, this approach is limited as it has been challenging to target specific cells within the brain or body. Here, we identify human Transient Receptor Potential A1 (hsTRPA1) as a candidate that confers ultrasound sensitivity to mammalian cells. Ultrasound-evoked gating of hsTRPA1 specifically requires its N-terminal tip region and cholesterol interactions; and target cells with an intact actin cytoskeleton, revealing elements of the sonogenetic mechanism. Next, we use calcium imaging and electrophysiology to show that hsTRPA1 potentiates ultrasound-evoked responses in primary neurons. Furthermore, unilateral expression of hsTRPA1 in mouse layer V motor cortical neurons leads to c-fos expression and contralateral limb responses in response to ultrasound delivered through an intact skull. Collectively, we demonstrate that hsTRPA1-based sonogenetics can effectively manipulate neurons within the intact mammalian brain, a method that could be used across species.


Flexible reprogramming of Pristionchus pacificus motivation for attacking Caenorhabditis elegans in predator-prey competition.

  • Kathleen T Quach‎ et al.
  • Current biology : CB‎
  • 2022‎

Animals with diverse diets must adapt their food priorities to a wide variety of environmental conditions. This diet optimization problem is especially complex for predators that compete with prey for food. Although predator-prey competition is widespread and ecologically critical, it remains difficult to disentangle predatory and competitive motivations for attacking competing prey. Here, we dissect the foraging decisions of the omnivorous nematode Pristionchus pacificus to reveal that its seemingly failed predatory attempts against Caenorhabditis elegans are actually motivated acts of efficacious territorial aggression. While P. pacificus easily kills and eats larval C. elegans with a single bite, adult C. elegans typically survives and escapes bites. However, non-fatal biting can provide competitive benefits by reducing access of adult C. elegans and its progeny to bacterial food that P. pacificus also eats. We show that the costs and benefits of both predatory and territorial outcomes influence how P. pacificus decides which food goal, prey or bacteria, should guide its motivation for biting. These predatory and territorial motivations impose different sets of rules for adjusting willingness to bite in response to changes in bacterial abundance. In addition to biting, predatory and territorial motivations also influence which search tactic P. pacificus uses to increase encounters with C. elegans. When treated with an octopamine receptor antagonist, P. pacificus switches from territorial to predatory motivation for both biting and search. Overall, we demonstrate that P. pacificus assesses alternate outcomes of attacking C. elegans and flexibly reprograms its foraging strategy to prioritize either prey or bacterial food.


Ultrasound Mediated Cellular Deflection Results in Cellular Depolarization.

  • Aditya Vasan‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2022‎

Ultrasound has been used to manipulate cells in both humans and animal models. While intramembrane cavitation and lipid clustering have been suggested as likely mechanisms, they lack experimental evidence. Here, high-speed digital holographic microscopy (kiloHertz order) is used to visualize the cellular membrane dynamics. It is shown that neuronal and fibroblast membranes deflect about 150 nm upon ultrasound stimulation. Next, a biomechanical model that predicts changes in membrane voltage after ultrasound exposure is developed. Finally, the model predictions are validated using whole-cell patch clamp electrophysiology on primary neurons. Collectively, it is shown that ultrasound stimulation directly defects the neuronal membrane leading to a change in membrane voltage and subsequent depolarization. The model is consistent with existing data and provides a mechanism for both ultrasound-evoked neurostimulation and sonogenetic control.


Big Data to the Bench: Transcriptome Analysis for Undergraduates.

  • Carl Procko‎ et al.
  • CBE life sciences education‎
  • 2019‎

Next-generation sequencing (NGS)-based methods are revolutionizing biology. Their prevalence requires biologists to be increasingly knowledgeable about computational methods to manage the enormous scale of data. As such, early introduction to NGS analysis and conceptual connection to wet-lab experiments is crucial for training young scientists. However, significant challenges impede the introduction of these methods into the undergraduate classroom, including the need for specialized computer programs and knowledge of computer coding. Here, we describe a semester-long, course-based undergraduate research experience at a liberal arts college combining RNA-sequencing (RNA-seq) analysis with student-driven, wet-lab experiments to investigate plant responses to light. Students derived hypotheses based on analysis of RNA-seq data and designed follow-up studies of gene expression and plant growth. Our assessments indicate that students acquired knowledge of big data analysis and computer coding; however, earlier exposure to computational methods may be beneficial. Our course requires minimal prior knowledge of plant biology, is easy to replicate, and can be modified to a shorter, directed-inquiry module. This framework promotes exploration of the links between gene expression and phenotype using examples that are clear and tractable and improves computational skills and bioinformatics self-efficacy to prepare students for the "big data" era of modern biology.


Stress-Induced Neural Plasticity Mediated by Glial GPCR REMO-1 Promotes C. elegans Adaptive Behavior.

  • In Hae Lee‎ et al.
  • Cell reports‎
  • 2021‎

Animal nervous systems remodel following stress. Although global stress-dependent changes are well documented, contributions of individual neuron remodeling events to animal behavior modification are challenging to study. In response to environmental insults, C. elegans become stress-resistant dauers. Dauer entry induces amphid sensory organ remodeling in which bilateral AMsh glial cells expand and fuse, allowing embedded AWC chemosensory neurons to extend sensory receptive endings. We show that amphid remodeling correlates with accelerated dauer exit upon exposure to favorable conditions and identify a G protein-coupled receptor, REMO-1, driving AMsh glia fusion, AWC neuron remodeling, and dauer exit. REMO-1 is expressed in and localizes to AMsh glia tips, is dispensable for other remodeling events, and promotes stress-induced expression of the remodeling receptor tyrosine kinase VER-1. Our results demonstrate how single-neuron structural changes affect animal behavior, identify key glial roles in stress-induced nervous system plasticity, and demonstrate that remodeling primes animals to respond to favorable conditions.


Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans.

  • Sarah G Leinwand‎ et al.
  • eLife‎
  • 2015‎

Chemosensory neurons extract information about chemical cues from the environment. How is the activity in these sensory neurons transformed into behavior? Using Caenorhabditis elegans, we map a novel sensory neuron circuit motif that encodes odor concentration. Primary neurons, AWC(ON) and AWA, directly detect the food odor benzaldehyde (BZ) and release insulin-like peptides and acetylcholine, respectively, which are required for odor-evoked responses in secondary neurons, ASEL and AWB. Consistently, both primary and secondary neurons are required for BZ attraction. Unexpectedly, this combinatorial code is altered in aged animals: odor-evoked activity in secondary, but not primary, olfactory neurons is reduced. Moreover, experimental manipulations increasing neurotransmission from primary neurons rescues aging-associated neuronal deficits. Finally, we correlate the odor responsiveness of aged animals with their lifespan. Together, these results show how odors are encoded by primary and secondary neurons and suggest reduced neurotransmission as a novel mechanism driving aging-associated sensory neural activity and behavioral declines.


Sensory organ remodeling in Caenorhabditis elegans requires the zinc-finger protein ZTF-16.

  • Carl Procko‎ et al.
  • Genetics‎
  • 2012‎

Neurons and glia display remarkable morphological plasticity, and remodeling of glia may facilitate neuronal shape changes. The molecular basis and control of glial shape changes is not well understood. In response to environmental stress, the nematode Caenorhabditis elegans enters an alternative developmental state, called dauer, in which glia and neurons of the amphid sensory organ remodel. Here, we describe a genetic screen aimed at identifying genes required for amphid glia remodeling. We previously demonstrated that remodeling requires the Otx-type transcription factor TTX-1 and its direct target, the receptor tyrosine kinase gene ver-1. We now find that the hunchback/Ikaros-like C2H2 zinc-finger factor ztf-16 is also required. We show that ztf-16 mutants exhibit pronounced remodeling defects, which are explained, at least in part, by defects in the expression of ver-1. Expression and cell-specific rescue studies suggest that ztf-16, like ttx-1, functions within glia; however, promoter deletion studies show that ztf-16 acts through a site on the ver-1 promoter that is independent of ttx-1. Our studies identify an important component of glia remodeling and suggest that transcriptional changes may underlie glial morphological plasticity in the sensory organs of C. elegans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: