Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Microbial colonization is required for normal neurobehavioral development in zebrafish.

  • Drake Phelps‎ et al.
  • Scientific reports‎
  • 2017‎

Changes in resident microbiota may have wide-ranging effects on human health. We investigated whether early life microbial disruption alters neurodevelopment and behavior in larval zebrafish. Conventionally colonized, axenic, and axenic larvae colonized at 1 day post fertilization (dpf) were evaluated using a standard locomotor assay. At 10 dpf, axenic zebrafish exhibited hyperactivity compared to conventionalized and conventionally colonized controls. Impairment of host colonization using antibiotics also caused hyperactivity in conventionally colonized larvae. To determine whether there is a developmental requirement for microbial colonization, axenic embryos were serially colonized on 1, 3, 6, or 9 dpf and evaluated on 10 dpf. Normal activity levels were observed in axenic larvae colonized on 1-6 dpf, but not on 9 dpf. Colonization of axenic embryos at 1 dpf with individual bacterial species Aeromonas veronii or Vibrio cholerae was sufficient to block locomotor hyperactivity at 10 dpf. Exposure to heat-killed bacteria or microbe-associated molecular patterns pam3CSK4 or Poly(I:C) was not sufficient to block hyperactivity in axenic larvae. These data show that microbial colonization during early life is required for normal neurobehavioral development and support the concept that antibiotics and other environmental chemicals may exert neurobehavioral effects via disruption of host-associated microbial communities.


Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure.

  • Noelle E Younge‎ et al.
  • Scientific reports‎
  • 2019‎

Growth failure during infancy is a major global problem that has adverse effects on long-term health and neurodevelopment. Preterm infants are disproportionately affected by growth failure and its effects. Herein we found that extremely preterm infants with postnatal growth failure have disrupted maturation of the intestinal microbiota, characterized by persistently low diversity, dominance of pathogenic bacteria within the Enterobacteriaceae family, and a paucity of strictly anaerobic taxa including Veillonella relative to infants with appropriate postnatal growth. Metabolomic profiling of infants with growth failure demonstrated elevated serum acylcarnitines, fatty acids, and other byproducts of lipolysis and fatty acid oxidation. Machine learning algorithms for normal maturation of the microbiota and metabolome among infants with appropriate growth revealed a pattern of delayed maturation of the microbiota and metabolome among infants with growth failure. Collectively, we identified novel microbial and metabolic features of growth failure in preterm infants and potentially modifiable targets for intervention.


Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish.

  • Chuan Yan‎ et al.
  • Cell‎
  • 2019‎

Xenograft cell transplantation into immunodeficient mice has become the gold standard for assessing pre-clinical efficacy of cancer drugs, yet direct visualization of single-cell phenotypes is difficult. Here, we report an optically-clear prkdc-/-, il2rga-/- zebrafish that lacks adaptive and natural killer immune cells, can engraft a wide array of human cancers at 37°C, and permits the dynamic visualization of single engrafted cells. For example, photoconversion cell-lineage tracing identified migratory and proliferative cell states in human rhabdomyosarcoma, a pediatric cancer of muscle. Additional experiments identified the preclinical efficacy of combination olaparib PARP inhibitor and temozolomide DNA-damaging agent as an effective therapy for rhabdomyosarcoma and visualized therapeutic responses using a four-color FUCCI cell-cycle fluorescent reporter. These experiments identified that combination treatment arrested rhabdomyosarcoma cells in the G2 cell cycle prior to induction of apoptosis. Finally, patient-derived xenografts could be engrafted into our model, opening new avenues for developing personalized therapeutic approaches in the future.


Single-cell imaging of human cancer xenografts using adult immunodeficient zebrafish.

  • Chuan Yan‎ et al.
  • Nature protocols‎
  • 2020‎

Zebrafish are an ideal cell transplantation model. They are highly fecund, optically clear and an excellent platform for preclinical drug discovery studies. Traditionally, xenotransplantation has been carried out using larval zebrafish that have not yet developed adaptive immunity. Larval engraftment is a powerful short-term transplant platform amenable to high-throughput drug screening studies, yet animals eventually reject tumors and cannot be raised at 37 °C. To address these limitations, we have recently developed adult casper-strain prkdc-/-, il2rgα-/- immunocompromised zebrafish that robustly engraft human cancer cells for in excess of 28 d. Because the adult zebrafish can be administered drugs by oral gavage or i.p. injection, our model is suitable for achieving accurate, preclinical drug dosing. Our platform also allows facile visualization of drug effects in vivo at single-cell resolution over days. Here, we describe the procedures for xenograft cell transplantation into the prkdc-/-, il2rgα-/- model, including refined husbandry protocols for optimal growth and rearing of immunosuppressed zebrafish at 37 °C; optimized intraperitoneal and periocular muscle cell transplantation; and epifluorescence and confocal imaging approaches to visualize the effects of administering clinically relevant drug dosing at single-cell resolution in vivo. After identification of adult homozygous animals, this procedure takes 35 d to complete. 7 days are required to acclimate adult fish to 37 °C, and 28 d are required for engraftment studies. Our protocol provides a comprehensive guide for using immunocompromised zebrafish for xenograft cell transplantation and credentials the model as a new preclinical drug discovery platform.


A High-Throughput Organoid Microinjection Platform to Study Gastrointestinal Microbiota and Luminal Physiology.

  • Ian A Williamson‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2018‎

The human gut microbiota is becoming increasingly recognized as a key factor in homeostasis and disease. The lack of physiologically relevant in vitro models to investigate host-microbe interactions is considered a substantial bottleneck for microbiota research. Organoids represent an attractive model system because they are derived from primary tissues and embody key properties of the native gut lumen; however, access to the organoid lumen for experimental perturbation is challenging. Here, we report the development and validation of a high-throughput organoid microinjection system for cargo delivery to the organoid lumen and high-content sampling.


A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export.

  • Ismael Gomez-Martinez‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin.


Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut.

  • Jieun Park‎ et al.
  • Developmental cell‎
  • 2019‎

The guts of neonatal mammals and stomachless fish have a limited capacity for luminal protein digestion, which allows oral acquisition of antibodies and antigens. However, how dietary protein is absorbed during critical developmental stages when the gut is still immature is unknown. Here, we show that specialized intestinal cells, which we call lysosome-rich enterocytes (LREs), internalize dietary protein via receptor-mediated and fluid-phase endocytosis for intracellular digestion and trans-cellular transport. In LREs, we identify a conserved endocytic machinery, composed of the scavenger receptor complex Cubilin/Amnionless and Dab2, that is required for protein uptake by LREs and for growth and survival of larval zebrafish. Moreover, impairing LRE function in suckling mice, via conditional deletion of Dab2, leads to stunted growth and severe protein malnutrition reminiscent of kwashiorkor, a devastating human malnutrition syndrome. These findings identify digestive functions and conserved molecular mechanisms in LREs that are crucial for vertebrate growth and survival.


In vivo analysis of white adipose tissue in zebrafish.

  • James E N Minchin‎ et al.
  • Methods in cell biology‎
  • 2011‎

White adipose tissue (WAT) is the major site of energy storage in bony vertebrates, and also serves central roles in the endocrine regulation of energy balance. The cellular and molecular mechanisms underlying WAT development and physiology are not well understood. This is due in part to difficulties associated with imaging adipose tissues in mammalian model systems, especially during early life stages. The zebrafish (Danio rerio) has recently emerged as a new model system for adipose tissue research, in which WAT can be imaged in a transparent living vertebrate at all life stages. Here we present detailed methods for labeling adipocytes in live zebrafish using fluorescent lipophilic dyes, and for in vivo microscopy of zebrafish WAT.


Glafenine-induced intestinal injury in zebrafish is ameliorated by μ-opioid signaling via enhancement of Atf6-dependent cellular stress responses.

  • Jason R Goldsmith‎ et al.
  • Disease models & mechanisms‎
  • 2013‎

Beside their analgesic properties, opiates exert beneficial effects on the intestinal wound healing response. In this study, we investigated the role of μ-opioid receptor (MOR) signaling on the unfolded protein response (UPR) using a novel zebrafish model of NSAID-induced intestinal injury. The NSAID glafenine was administered to zebrafish larvae at 5 days post-fertilization (dpf) for up to 24 hours in the presence or absence of the MOR-specific agonist DALDA. By analysis with histology, transmission electron microscopy and vital dye staining, glafenine-treated zebrafish showed evidence of endoplasmic reticulum and mitochondrial stress, with disrupted intestinal architecture and halted cell stress responses, alongside accumulation of apoptotic intestinal epithelial cells in the lumen. Although the early UPR marker BiP was induced with glafenine-induced injury, downstream atf6 and s-xbp1 expression were paradoxically not increased, explaining the halted cell stress responses. The μ-opioid agonist DALDA protected against glafenine-induced injury through induction of atf6-dependent UPR. Our findings show that DALDA prevents glafenine-induced epithelial damage through induction of effective UPR.


Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection.

  • Lauren L Williamson‎ et al.
  • Brain, behavior, and immunity‎
  • 2016‎

The incidence of autoimmune and inflammatory diseases has risen dramatically in post-industrial societies. "Biome depletion" - loss of commensal microbial and multicellular organisms such as helminths (intestinal worms) that profoundly modulate the immune system - may contribute to these increases. Hyperimmune-associated disorders also affect the brain, especially neurodevelopment, and increasing evidence links early-life infection to cognitive and neurodevelopmental disorders. We have demonstrated previously that rats infected with bacteria as newborns display life-long vulnerabilities to cognitive dysfunction, a vulnerability that is specifically linked to long-term hypersensitivity of microglial cell function, the resident immune cells of the brain. Here, we demonstrate that helminth colonization of pregnant dams attenuated the exaggerated brain cytokine response of their offspring to bacterial infection, and that combined with post-weaning colonization of offspring with helminths (consistent with their mothers treatment) completely prevented enduring microglial sensitization and cognitive dysfunction in adulthood. Importantly, helminths had no overt impact on adaptive immune cell subsets, whereas exaggerated innate inflammatory responses in splenic macrophages were prevented. Finally, helminths altered the effect of neonatal infection on the gut microbiome; neonatal infection with Escherichia coli caused a shift from genera within the Actinobacteria and Tenericutes phyla to genera in the Bacteroidetes phylum in rats not colonized with helminths, but helminths attenuated this effect. In sum, these data point toward an inter-relatedness of various components of the biome, and suggest potential mechanisms by which this helminth might exert therapeutic benefits in the treatment of neuroinflammatory and cognitive disorders.


A classification system for zebrafish adipose tissues.

  • James E N Minchin‎ et al.
  • Disease models & mechanisms‎
  • 2017‎

The zebrafish model system offers significant utility for in vivo imaging of adipose tissue (AT) dynamics and for screening to identify chemical and genetic modifiers of adiposity. In particular, AT can be quantified accurately in live zebrafish using fluorescent lipophilic dyes. Although this methodology offers considerable promise, the comprehensive identification and classification of zebrafish ATs has not been performed. Here, we use fluorescent lipophilic dyes and in vivo imaging systematically to identify, classify and quantify the zebrafish AT pool. We identify 34 regionally distinct zebrafish ATs, including five visceral ATs and 22 subcutaneous ATs. For each of these ATs, we describe detailed morphological characteristics to aid their identification in future studies. Furthermore, we quantify the areas for each AT and construct regression models to allow prediction of expected AT size and variation across a range of developmental stages. Finally, we demonstrate the utility of this resource for identifying effects of strain variation and high-fat diet on AT growth. Altogether, this resource provides foundational information on the identity, dynamics and expected quantities of zebrafish ATs for use as a reference for future studies.


Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection.

  • John F Rawls‎ et al.
  • Cell‎
  • 2006‎

The gut microbiotas of zebrafish and mice share six bacterial divisions, although the specific bacteria within these divisions differ. To test how factors specific to host gut habitat shape microbial community structure, we performed reciprocal transplantations of these microbiotas into germ-free zebrafish and mouse recipients. The results reveal that communities are assembled in predictable ways. The transplanted community resembles its community of origin in terms of the lineages present, but the relative abundance of the lineages changes to resemble the normal gut microbial community composition of the recipient host. Thus, differences in community structure between zebrafish and mice arise in part from distinct selective pressures imposed within the gut habitat of each host. Nonetheless, vertebrate responses to microbial colonization of the gut are ancient: Functional genomic studies disclosed shared host responses to their compositionally distinct microbial communities and distinct microbial species that elicit conserved responses.


Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways.

  • Lihua Ye‎ et al.
  • Cell host & microbe‎
  • 2021‎

The intestinal epithelium senses nutritional and microbial stimuli using epithelial sensory enteroendocrine cells (EEC). EECs communicate nutritional information to the nervous system, but whether they also relay signals from intestinal microbes remains unknown. Using in vivo real-time measurements of EEC and nervous system activity in zebrafish, we discovered that the bacteria Edwardsiella tarda activate EECs through the receptor transient receptor potential ankyrin A1 (Trpa1) and increase intestinal motility. Microbial, pharmacological, or optogenetic activation of Trpa1+EECs directly stimulates vagal sensory ganglia and activates cholinergic enteric neurons by secreting the neurotransmitter 5-hydroxytryptamine (5-HT). A subset of indole derivatives of tryptophan catabolism produced by E. tarda and other gut microbes activates zebrafish EEC Trpa1 signaling. These catabolites also directly stimulate human and mouse Trpa1 and intestinal 5-HT secretion. These results establish a molecular pathway by which EECs regulate enteric and vagal neuronal pathways in response to microbial signals.


Single-cell imaging of T cell immunotherapy responses in vivo.

  • Chuan Yan‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.


Spontaneous episodic inflammation in the intestines of mice lacking HNF4A is driven by microbiota and associated with early life microbiota alterations.

  • Cecelia Kelly‎ et al.
  • mBio‎
  • 2023‎

The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals who mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. Whereas IBD clinical presentation is well described, how interactions between microbiota and host genotype impact early subclinical stages of the disease remains unclear. The transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) has been associated with human IBD, and deletion of Hnf4a in intestinal epithelial cells (IECs) in mice (Hnf4aΔIEC) leads to spontaneous colonic inflammation by 6-12 mo of age. Here, we tested if pathology in Hnf4aΔIEC mice begins earlier in life and if microbiota contribute to that process. Longitudinal analysis revealed that Hnf4aΔIEC mice reared in specific pathogen-free (SPF) conditions develop episodic elevated fecal lipocalin 2 (Lcn2) and loose stools beginning by 4-5 wk of age. Lifetime cumulative Lcn2 levels correlated with histopathological features of colitis at 12 mo. Antibiotic and gnotobiotic tests showed that these phenotypes in Hnf4aΔIEC mice were dependent on microbiota. Fecal 16S rRNA gene sequencing in SPF Hnf4aΔIEC and control mice disclosed that genotype significantly contributed to differences in microbiota composition by 12 mo, and longitudinal analysis of the Hnf4aΔIEC mice with the highest lifetime cumulative Lcn2 revealed that microbial community differences emerged early in life when elevated fecal Lcn2 was first detected. These microbiota differences included enrichment of a novel phylogroup of Akkermansia muciniphila in Hnf4aΔIEC mice. We conclude that HNF4A functions in IEC to shape composition of the gut microbiota and protect against episodic inflammation induced by microbiota throughout the lifespan. IMPORTANCE The inflammatory bowel diseases (IBD), characterized by chronic inflammation of the intestine, affect millions of people around the world. Although significant advances have been made in the clinical management of IBD, the early subclinical stages of IBD are not well defined and are difficult to study in humans. This work explores the subclinical stages of disease in mice lacking the IBD-associated transcription factor HNF4A in the intestinal epithelium. Whereas these mice do not develop overt disease until late in adulthood, we find that they display episodic intestinal inflammation, loose stools, and microbiota changes beginning in very early life stages. Using germ-free and antibiotic-treatment experiments, we reveal that intestinal inflammation in these mice was dependent on the presence of microbiota. These results suggest that interactions between host genotype and microbiota can drive early subclinical pathologies that precede the overt onset of IBD and describe a mouse model to explore those important processes.


Intronic cis-regulatory modules mediate tissue-specific and microbial control of angptl4/fiaf transcription.

  • J Gray Camp‎ et al.
  • PLoS genetics‎
  • 2012‎

The intestinal microbiota enhances dietary energy harvest leading to increased fat storage in adipose tissues. This effect is caused in part by the microbial suppression of intestinal epithelial expression of a circulating inhibitor of lipoprotein lipase called Angiopoietin-like 4 (Angptl4/Fiaf). To define the cis-regulatory mechanisms underlying intestine-specific and microbial control of Angptl4 transcription, we utilized the zebrafish system in which host regulatory DNA can be rapidly analyzed in a live, transparent, and gnotobiotic vertebrate. We found that zebrafish angptl4 is transcribed in multiple tissues including the liver, pancreatic islet, and intestinal epithelium, which is similar to its mammalian homologs. Zebrafish angptl4 is also specifically suppressed in the intestinal epithelium upon colonization with a microbiota. In vivo transgenic reporter assays identified discrete tissue-specific regulatory modules within angptl4 intron 3 sufficient to drive expression in the liver, pancreatic islet β-cells, or intestinal enterocytes. Comparative sequence analyses and heterologous functional assays of angptl4 intron 3 sequences from 12 teleost fish species revealed differential evolution of the islet and intestinal regulatory modules. High-resolution functional mapping and site-directed mutagenesis defined the minimal set of regulatory sequences required for intestinal activity. Strikingly, the microbiota suppressed the transcriptional activity of the intestine-specific regulatory module similar to the endogenous angptl4 gene. These results suggest that the microbiota might regulate host intestinal Angptl4 protein expression and peripheral fat storage by suppressing the activity of an intestine-specific transcriptional enhancer. This study provides a useful paradigm for understanding how microbial signals interact with tissue-specific regulatory networks to control the activity and evolution of host gene transcription.


Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape.

  • J Gray Camp‎ et al.
  • Genome research‎
  • 2014‎

Microbiota regulate intestinal physiology by modifying host gene expression along the length of the intestine, but the underlying regulatory mechanisms remain unresolved. Transcriptional specificity occurs through interactions between transcription factors (TFs) and cis-regulatory regions (CRRs) characterized by nucleosome-depleted accessible chromatin. We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were accompanied by major alterations in chromatin accessibility. Surprisingly, we discovered that microbiota modify host gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regulation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their binding sites in nucleosome-depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is preprogrammed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs by specific TFs.


Short-Chain Fatty Acid Production by Gut Microbiota from Children with Obesity Differs According to Prebiotic Choice and Bacterial Community Composition.

  • Zachary C Holmes‎ et al.
  • mBio‎
  • 2020‎

Pediatric obesity remains a public health burden and continues to increase in prevalence. The gut microbiota plays a causal role in obesity and is a promising therapeutic target. Specifically, the microbial production of short-chain fatty acids (SCFA) from the fermentation of otherwise indigestible dietary carbohydrates may protect against pediatric obesity and metabolic syndrome. Still, it has not been demonstrated that therapies involving microbiota-targeting carbohydrates, known as prebiotics, will enhance gut bacterial SCFA production in children and adolescents with obesity (age, 10 to 18 years old). Here, we used an in vitro system to examine the SCFA production by fecal microbiota from 17 children with obesity when exposed to five different commercially available over-the-counter (OTC) prebiotic supplements. We found microbiota from all 17 patients actively metabolized most prebiotics. Still, supplements varied in their acidogenic potential. Significant interdonor variation also existed in SCFA production, which 16S rRNA sequencing supported as being associated with differences in the host microbiota composition. Last, we found that neither fecal SCFA concentration, microbiota SCFA production capacity, nor markers of obesity positively correlated with one another. Together, these in vitro findings suggest the hypothesis that OTC prebiotic supplements may be unequal in their ability to stimulate SCFA production in children and adolescents with obesity and that the most acidogenic prebiotic may differ across individuals.IMPORTANCE Pediatric obesity remains a major public health problem in the United States, where 17% of children and adolescents are obese, and rates of pediatric "severe obesity" are increasing. Children and adolescents with obesity face higher health risks, and noninvasive therapies for pediatric obesity often have limited success. The human gut microbiome has been implicated in adult obesity, and microbiota-directed therapies can aid weight loss in adults with obesity. However, less is known about the microbiome in pediatric obesity, and microbiota-directed therapies are understudied in children and adolescents. Our research has two important findings: (i) dietary prebiotics (fiber) result in the microbiota from adolescents with obesity producing more SCFA, and (ii) the effectiveness of each prebiotic is donor dependent. Together, these findings suggest that prebiotic supplements could help children and adolescents with obesity, but that these therapies may not be "one size fits all."


Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha.

  • James M Davison‎ et al.
  • Genome research‎
  • 2017‎

Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.


Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae.

  • Chuyi Chen‎ et al.
  • Nature communications‎
  • 2021‎

Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: