Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 65 papers

Phospholipase D1 protein coordinates dynamic assembly of HIF-1α-PHD-VHL to regulate HIF-1α stability.

  • Mi Hee Park‎ et al.
  • Oncotarget‎
  • 2014‎

Hypoxia-inducible factor-1α (HIF-1α) is a master transcriptional regulator of cellular response to hypoxia. In normoxia, HIF-1α is degraded through the prolyl hydroxylase (PHD) and von Hippel-Lindau (VHL) ubiquitination pathway. However, it is unknown whether PHD and VHL exert their enzymatic activities on HIF-1α separately or as a multiprotein complex. Here, we show that phospholipase D1 (PLD1) protein itself acts as a molecular platform, interacting directly with HIF-1α, PHD, and VHL, thereby dynamically assembling a multiprotein complex that mediates efficient degradation of HIF-1α in an O2-dependent manner. PLD1 depletion prevents degradation of HIF-1α; however, overall, PLD1 activity is predominantly involved in the upregulation of HIF-1α through increased translation, despite negative regulation of HIF-1α stability by PLD1 protein itself, suggesting dual roles of PLD1 in the regulation of HIF-1α. Disruption of the interactions of PLD1 with the proteins might be involved in hypoxic stabilization of HIF-1α. Interestingly, the pleckstrin homology domain interacting with these proteins promoted degradation of HIF-1α independent of oxygen concentration and suppressed tumor progression. These observations define a novel function of PLD1 as a previously unrecognized HIF-1α regulator.


The pleckstrin homology domain of phospholipase D1 accelerates EGFR endocytosis by increasing the expression of the Rab5 effector, rabaptin-5.

  • Mi Hee Park‎ et al.
  • Experimental & molecular medicine‎
  • 2015‎

Endocytosis is differentially regulated by hypoxia-inducible factor-1α (HIF-1α) and phospholipase D (PLD). However, the relationship between HIF-1α and PLD in endocytosis is unknown. HIF-1α is degraded through the prolyl hydroxylase (PHD)/von Hippel-Lindau (VHL) ubiquitination pathway in an oxygen-dependent manner. Here, we show that PLD1 recovers the decrease in epidermal growth factor receptor (EGFR) endocytosis induced by HIF-1α independent of lipase activity via the Rab5-mediated endosome fusion pathway. EGF-induced interaction of PLD1 with HIF-1α, PHD and VHL may contribute to EGFR endocytosis. The pleckstrin homology domain (PH) of PLD1 itself promotes degradation of HIF-1α, then accelerates EGFR endocytosis via upregulation of rabaptin-5 and suppresses tumor progression. These findings reveal a novel role of the PLD1-PH domain as a positive regulator of endocytosis and provide a link between PLD1 and HIF-1α in the EGFR endocytosis pathway.


Increased Expression of Osteopontin in the Degenerating Striatum of Rats Treated with Mitochondrial Toxin 3-Nitropropionic Acid: A Light and Electron Microscopy Study.

  • Hong-Lim Kim‎ et al.
  • Acta histochemica et cytochemica‎
  • 2015‎

The mycotoxin 3-nitropropionic acid (3NP) is an irreversible inhibitor that induces neuronal damage by inhibiting mitochondrial complex II. Neurodegeneration induced by 3NP, which is preferentially induced in the striatum, is caused by an excess influx and accumulation of calcium in mitochondria. Osteopontin (OPN) is a glycosylated phosphoprotein and plays a role in the regulation of calcium precipitation in the injured brain. The present study was designed to examine whether induction of OPN protein is implicated in the pathogenesis of 3NP-induced striatal neurodegeneration. We observed overlapping regional expression of OPN, the neurodegeneration marker Fluoro-Jade B, and the microglial marker ionized calcium-binding adaptor molecule 1 (Iba1) in the 3NP-lesioned striatum. OPN expression was closely associated with the mitochondrial marker NADH dehydrogenase (ubiquinone) flavoprotein 2 in the damaged striatum. In addition, immunoelectron microscopy demonstrated that OPN protein was specifically localized to the inner membrane and matrix of the mitochondria in degenerating striatal neurons, and cell fragments containing OPN-labeled mitochondria were also present within activated brain macrophages. Thus, our study revealed that OPN expression is associated with mitochondrial dysfunction produced by 3NP-induced alteration of mitochondrial calcium homeostasis, suggesting that OPN is involved in the pathogenesis of striatal degeneration by 3NP administration.


Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase.

  • Soohwan Yum‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel-Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1.


Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals.

  • Jieun Park‎ et al.
  • Scientific reports‎
  • 2017‎

Recent evidence shows that the gut microbiota has an important role in gut-brain crosstalk and is linked to neuronal disorders. The aim of this study was to investigate the effects of intestinal Ruminococcus albus with probiotic potential on neuroprotection in oxidatively stressed SH-SY5Y neuroblastoma cells and animals. To investigate these effects, conditioned medium was prepared using Caco-2 cells cultured with heat-killed R. albus (CRA-CM). Caco-2 cells cultured with heat-killed R. albus showed increased BDNF expression and BDNF protein levels increased in CRA-CM. CRA-CM up-regulated the protein expression levels of SRF, C-fos and CDK2. In addition, CRA-CM protected SH-SY5Y cells from H2O2-induced cell death. CRA-CM significantly decreased the Bax/Bcl-2 ratio in oxidatively stressed SH-SY5Y cells. Animal experiments showed that oral administration of heat-killed R. albus for 15 days attenuated the oxidative stress induced by sodium arsenate. Treatment with heat-killed R. albus reduced the level of ROS, and the levels of SOD and GSH increased in oxidatively stressed brains. In conclusion, the secretome prepared from Caco-2 cells cultured with heat-killed R. albus might promote neuronal proliferation through the activation of cell proliferation-related proteins, and heat-killed R. albus protects neurons from oxidative damage by reducing ROS levels and increasing SOD and GSH levels.


PLD1 and PLD2 differentially regulate the balance of macrophage polarization in inflammation and tissue injury.

  • Won Chan Hwang‎ et al.
  • Journal of cellular physiology‎
  • 2021‎

Phospholipase D (PLD) isoforms PLD1 and PLD2 serve as the primary nodes where diverse signaling pathways converge. However, their isoform-specific functions remain unclear. We showed that PLD1 and PLD2 selectively couple to toll-like receptor 4 (TLR4) and interleukin 4 receptor (IL-4R) and differentially regulate macrophage polarization of M1 and M2 via the LPS-MyD88 axis and the IL-4-JAK3 signaling, respectively. Lipopolysaccharide (LPS) enhanced TLR4 or MyD88 interaction with PLD1; IL-4 induced IL-4R or JAK3 association with PLD2, indicating isozyme-specific signaling events. PLD1 and PLD2 are indispensable for M1 polarization and M2 polarization, respectively. Genetic and pharmacological targeting of PLD1 conferred protection against LPS-induced sepsis, cardiotoxin-induced muscle injury, and skin injury by promoting the shift toward M2; PLD2 ablation intensified disease severity by promoting the shift toward M1. Enhanced Foxp3+ regulatory T cell recruitment also influenced the anti-inflammatory phenotype of Pld1LyzCre macrophages. We reveal a previously uncharacterized role of PLD isoforms in macrophage polarization, signifying potential pharmacological interventions for macrophage modulation.


Acetazolamide-eluting biodegradable tubular stent prevents pancreaticojejunal anastomotic leakage.

  • Jung-Hoon Park‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2021‎

Postoperative pancreatic fistula at the early stage can lead to auto-digestion, which may delay the recovery of the pancreaticojejunal (PJ) anastomosis. The efficacy and safety of an acetazolamide-eluting biodegradable tubular stent (AZ-BTS) for the prevention of self-digestion and intra-abdominal inflammatory diseases caused by pancreatic juice leakage after PJ anastomosis in a porcine model were investigated. The AZ-BTS was successfully fabricated using a multiple dip-coating process. Then, the drug amount and release profile were analyzed. The therapeutic effects of AZ were examined in vitro using two kinds of pancreatic cancer cell lines, AsPC-1 and PANC-1. The efficacy of AZ-BTS was assessed in a porcine PJ leakage model, with animals were each assigned to a leakage group, a BTS group and an AZ-BTS group. The overall mortality rates in these three groups were 44.4%, 16.6%, and 0%, respectively. Mean α-amylase concentrations were significantly higher in the leakage and BTS groups than in the AZ-BTS group on day 2-5 (p < 0.05 each all). The luminal diameters and areas of the pancreatic duct were significantly larger in the leakage group than in the BTS and AZ-BTS groups (p < 0.05 each all). These findings indicate that AZ-BTS can significantly suppress intra-abdominal inflammatory diseases caused by pancreatic juice leakage and also prevent late stricture formation at the PJ anastomotic site in a porcine model.


Curated gene expression dataset of differentiating 3T3-L1 adipocytes under pharmacological and genetic perturbations.

  • Mahmoud Ahmed‎ et al.
  • Adipocyte‎
  • 2020‎

The 3T3-L1 cell line is used as an adipocyte differentiation model for the analysis of genes specifically expressed during the differentiation course. This cell model has several applications in obesity and insulin resistance research. We built a data resource to model gene expression of differentiating and mature adipocytes in response to several drugs and gene manipulations. We surveyed the literature survey for microarray datasets of differentiating 3T3-L1 cell line sampled at one or more time points under genetic or pharmacological perturbations. Data and metadata were obtained from the gene expression omnibus. The metadata were manually curated using unified language across the studies. Probe intensities were mapped and collapsed to genes using a reproducible pipeline. Samples were classified into none, genetically or pharmacologically modified. In addition to the clean datasets, two aggregated sets were further homogenized for illustration purposes. The curated datasets are available as an R/Bioconductor experimental data package curatedAdipoArray. The package documents the source code of the data collection, curation and processing. Finally, we used a subset of the data to effectively remove batch effects and reproduce biological observations. Database URL https://bioconductor.org/packages/curatedAdipoArray.


The impact of organic extracts of seasonal PM2.5 on primary human lung epithelial cells and their chemical characterization.

  • Jieun Park‎ et al.
  • Environmental science and pollution research international‎
  • 2021‎

Lung epithelial cells serve as the first line of defense against various inhaled pollutant particles. To investigate the adverse health effects of organic components of fine particulate matter (PM2.5) collected in Seoul, South Korea, we selected 12 PM2.5 samples from May 2016 to January 2017 and evaluated the effects of organic compounds of PM2.5 on inflammation, cellular aging, and macroautophagy in human lung epithelial cells isolated directly from healthy donors. Organic extracts of PM2.5 specifically induced neutrophilic chemokine and interleukin-8 expression via extracellular signal-regulated kinase activation. Moreover, PM2.5 significantly increased the expression of aging markers (p16, p21, and p27) and activated macroautophagy. Average mass concentrations of organic and elemental carbon had no significant correlations with PM2.5 effects. However, polycyclic aromatic hydrocarbons and n-alkanes were the most relevant components of PM2.5 that correlated with neutrophilic inflammation. Vegetative detritus and residential bituminous coal combustion sources strongly correlated with neutrophilic inflammation, aging, and macroautophagy activation. These data suggest that the chemical composition of PM2.5 is important for determining the adverse health effects of PM2.5. Our study provides encouraging evidence to regulate the harmful components of PM2.5 in Seoul.


Tanc2-mediated mTOR inhibition balances mTORC1/2 signaling in the developing mouse brain and human neurons.

  • Sun-Gyun Kim‎ et al.
  • Nature communications‎
  • 2021‎

mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.


Correlative Light and Electron Microscopy Using Frozen Section Obtained Using Cryo-Ultramicrotomy.

  • Hong-Lim Kim‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Immuno-electron microscopy (Immuno-EM) is a powerful tool for identifying molecular targets with ultrastructural details in biological specimens. However, technical barriers, such as the loss of ultrastructural integrity, the decrease in antigenicity, or artifacts in the handling process, hinder the widespread use of the technique by biomedical researchers. We developed a method to overcome such challenges by combining light and electron microscopy with immunolabeling based on Tokuyasu's method. Using cryo-sectioned biological specimens, target proteins with excellent antigenicity were first immunolabeled for confocal analysis, and then the same tissue sections were further processed for electron microscopy, which provided a well-preserved ultrastructure comparable to that obtained using conventional electron microscopy. Moreover, this method does not require specifically designed correlative light and electron microscopy (CLEM) devices but rather employs conventional confocal and electron microscopes; therefore, it can be easily applied in many biomedical studies.


Inhibition of phospholipase D1 induces immunogenic cell death and potentiates cancer immunotherapy in colorectal cancer.

  • Won Chan Hwang‎ et al.
  • Experimental & molecular medicine‎
  • 2022‎

Phospholipase D (PLD) is a potential therapeutic target against cancer. However, the contribution of PLD inhibition to the antitumor response remains unknown. We developed a potent and selective PLD1 inhibitor based on computer-aided drug design. The inhibitor enhanced apoptosis in colorectal cancer (CRC) cells but not in normal colonic cells, and in vitro cardiotoxicity was not observed. The inhibitor downregulated the Wnt/β-catenin signaling pathway and reduced the migration, invasion, and self-renewal capacity of CRC cells. In cancer, therapeutic engagement of immunogenic cell death (ICD) leads to more effective responses by eliciting the antitumor immunity of T cells. The CRC cells treated with the inhibitor showed hallmarks of ICD, including downregulation of "do not eat-me" signals (CD24, CD47, programmed cell death ligand 1 [PD-L1]), upregulation of "eat-me" signal (calreticulin), release of high-mobility group Box 1, and ATP. PLD1 inhibition subsequently enhanced the phagocytosis of cancer cells by macrophages through the surface expression of costimulatory molecules; as a result, the cancer cells were more susceptible to cytotoxic T-cell-mediated killing. Moreover, PLD1 inhibition attenuated colitis-associated CRC and orthotopically injected tumors, probably by controlling multiple pathways, including Wnt signaling, phagocytosis checkpoints, and immune signaling. Furthermore, combination therapy with a PLD1 inhibitor and an anti-PD-L1 antibody further enhanced tumor regression via immune activation in the tumor environment. Collectively, in this study, PLD1 was identified as a critical regulator of the tumor microenvironment in colorectal cancer, suggesting the potential of PLD1 inhibitors for cancer immunotherapy based on ICD and immune activation. PLD1 inhibitors may act as promising immune modulators in antitumor treatment via ICD.


WDR76 degrades RAS and suppresses cancer stem cell activation in colorectal cancer.

  • Eun Ji Ro‎ et al.
  • Cell communication and signaling : CCS‎
  • 2019‎

Stabilization of RAS is a key event for the hyper-activation of Wnt/β-catenin signaling and activation of cancer stem cell (CSC) in colorectal cancer (CRC). WD Repeat protein 76 (WDR76) mediates the polyubiquitination-dependent degradation of RAS in hepatocellular carcinoma (HCC). We investigated whether WDR76 destabilizes RAS and acts as a tumor suppressor inhibiting CSC activation in CRC.


Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut.

  • Jieun Park‎ et al.
  • Developmental cell‎
  • 2019‎

The guts of neonatal mammals and stomachless fish have a limited capacity for luminal protein digestion, which allows oral acquisition of antibodies and antigens. However, how dietary protein is absorbed during critical developmental stages when the gut is still immature is unknown. Here, we show that specialized intestinal cells, which we call lysosome-rich enterocytes (LREs), internalize dietary protein via receptor-mediated and fluid-phase endocytosis for intracellular digestion and trans-cellular transport. In LREs, we identify a conserved endocytic machinery, composed of the scavenger receptor complex Cubilin/Amnionless and Dab2, that is required for protein uptake by LREs and for growth and survival of larval zebrafish. Moreover, impairing LRE function in suckling mice, via conditional deletion of Dab2, leads to stunted growth and severe protein malnutrition reminiscent of kwashiorkor, a devastating human malnutrition syndrome. These findings identify digestive functions and conserved molecular mechanisms in LREs that are crucial for vertebrate growth and survival.


A Therapeutic Strategy for Chemotherapy-Resistant Gastric Cancer via Destabilization of Both β-Catenin and RAS.

  • Won-Ji Ryu‎ et al.
  • Cancers‎
  • 2019‎

: Treatment of advanced gastric cancer patients with current standard chemotherapeutic agents frequently results in resistance, leading to poor overall survival. However, there has been no success in developing strategies to overcome it. We showed the expression levels of both β-catenin and RAS were significantly increased and correlated in tissues of 756 gastric cancer (GC) patients and tissues of primary- and acquired-resistance patient-derived xenograft tumors treated with 5-fluorouracil and oxaliplatin modulated with leucovorin (FOLFOX). On the basis of our previous studies, where small molecules to suppress colorectal cancer (CRC) via degrading both β-catenin and RAS were developed, we tested the effectiveness of KYA1797K, a representative compound functioning by binding axin, in the growth of GC cells. The efficacy test of the drugs using gastric tumor organoids of Apc1638N mice showed that the CD44 and ALDH1A3 cancer stem cell markers were induced by FOLFOX, but not by KYA1797K. KYA1797K also efficiently suppressed tumors generated by re-engrafting the FOLFOX-resistant patient-derived xenograft (PDX) tumors, which also showed resistance to paclitaxel. Overall, the small-molecule approach degrading both β-catenin and RAS has potential as a therapeutic strategy for treating GC patients resistant to current standard chemotherapies.


Inhibition of phospholipase D2 induces autophagy in colorectal cancer cells.

  • Won Chan Hwang‎ et al.
  • Experimental & molecular medicine‎
  • 2014‎

Autophagy is a conserved lysosomal self-digestion process used for the breakdown of long-lived proteins and damaged organelles, and it is associated with a number of pathological processes, including cancer. Phospholipase D (PLD) isozymes are dysregulated in various cancers. Recently, we reported that PLD1 is a new regulator of autophagy and is a potential target for cancer therapy. Here, we investigated whether PLD2 is involved in the regulation of autophagy. A PLD2-specific inhibitor and siRNA directed against PLD2 were used to treat HT29 and HCT116 colorectal cancer cells, and both inhibition and genetic knockdown of PLD2 in these cells significantly induced autophagy, as demonstrated by the visualization of light chain 3 (LC3) puncta and autophagic vacuoles as well as by determining the LC3-II protein level. Furthermore, PLD2 inhibition promoted autophagic flux via the canonical Atg5-, Atg7- and AMPK-Ulk1-mediated pathways. Taken together, these results suggest that PLD2 might have a role in autophagy and that its inhibition might provide a new therapeutic basis for targeting autophagy.


Phospholipase D1 inhibition sensitizes glioblastoma to temozolomide and suppresses its tumorigenicity.

  • Dong Woo Kang‎ et al.
  • The Journal of pathology‎
  • 2020‎

Resistance of glioblastoma to the chemotherapeutic compound temozolomide is associated with the presence of glioblastoma stem cells in glioblastoma and is a key obstacle for the poor prognosis of glioblastoma. Here, we show that phospholipase D1 is elevated in CD44High glioblastoma stem cells and in glioblastoma, especially recurring glioblastoma. Phospholipase D1 elevation positively correlated with the level of CD44 and poor prognosis in glioblastoma patients. Temozolomide significantly upregulated the expression of phospholipase D1 in the low and moderate CD44 populations of glioblastoma stem cells, but not in the CD44High population in which phospholipase D1 is highly expressed. Phospholipase D1 conferred resistance to temozolomide in CD44High glioblastoma stem cells and increased their self-renewal capacity and maintenance. Phospholipase D1 expression significantly correlated with levels of temozolomide resistance factors, which were suppressed by microRNA-320a and -4496 induced by phospholipase D1 inhibition. Genetic and pharmacological targeting of phospholipase D1 attenuated glioblastoma stem cell-derived intracranial tumors of glioblastoma using the microRNAs, and improved survival. Treatment solely with temozolomide produced no benefits on the glioblastoma, whereas in combination, phospholipase D1 inhibition sensitized glioblastoma stem cells to temozolomide and reduced glioblastoma tumorigenesis. Together, these findings indicate that phospholipase D1 inhibition might overcome resistance to temozolomide and represents a potential treatment strategy for glioblastoma. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress.

  • Su Hyung Park‎ et al.
  • Nature communications‎
  • 2019‎

Maintaining stability of replication forks is important for genomic integrity. However, it is not clear how replisome proteins contribute to fork stability under replication stress. Here, we report that ATAD5, a PCNA unloader, plays multiple functions at stalled forks including promoting its restart. ATAD5 depletion increases genomic instability upon hydroxyurea treatment in cultured cells and mice. ATAD5 recruits RAD51 to stalled forks in an ATR kinase-dependent manner by hydroxyurea-enhanced protein-protein interactions and timely removes PCNA from stalled forks for RAD51 recruitment. Consistent with the role of RAD51 in fork regression, ATAD5 depletion inhibits slowdown of fork progression and native 5-bromo-2'-deoxyuridine signal induced by hydroxyurea. Single-molecule FRET showed that PCNA itself acts as a mechanical barrier to fork regression. Consequently, DNA breaks required for fork restart are reduced by ATAD5 depletion. Collectively, our results suggest an important role of ATAD5 in maintaining genome integrity during replication stress.


Phospholipase D1 is upregulated by vorinostat and confers resistance to vorinostat in glioblastoma.

  • Dong Woo Kang‎ et al.
  • Journal of cellular physiology‎
  • 2021‎

Glioblastoma (GBM) is an aggressive brain tumor and drug resistance remains a major barrier for therapeutics. Epigenetic alterations are implicated in GBM pathogenesis, and epigenetic modulators including histone deacetylase (HDAC) inhibitors are exploited as promising anticancer therapies. Here, we demonstrate that phospholipase D1 (PLD1) is a transcriptional target of HDAC inhibitors and confers resistance to HDAC inhibitor in GBM. Treatment of vorinostat upregulates PLD1 through PKCζ-Sp1 axis. Vorinostat induces dynamic changes in the chromatin structure and transcriptional machinery associated with PLD1 promoter region. Cotreatment of vorinostat with PLD1 inhibitor further attenuates invasion, angiogenesis, colony-forming capacity, and self-renewal capacity, compared with those of either treatment. PLD1 inhibitor overcomes resistance to vorinostat in GBM cells intracranial GBM tumors. Our finding provides new insight into the role of PLD1 as a target of resistance to vorinostat, and PLD1 inhibitor might provide the basis for therapeutic combinations with improved efficacy of HDAC inhibitor.


Phospholipase D2 promotes degradation of hypoxia-inducible factor-1α independent of lipase activity.

  • Mi Hee Park‎ et al.
  • Experimental & molecular medicine‎
  • 2015‎

Hypoxia-inducible factor-1α (HIF-1α) is a key transcriptional mediator that coordinates the expression of various genes involved in tumorigenesis in response to changes in oxygen tension. The stability of HIF-1α protein is determined by oxygen-dependent prolyl hydroxylation, which is required for binding of the von Hippel-Lindau protein (VHL), the recognition component of an E3 ubiquitin ligase that targets HIF-1α for ubiquitination and degradation. Here, we demonstrate that PLD2 protein itself interacts with HIF-1α, prolyl hydroxylase (PHD) and VHL to promote degradation of HIF-1α via the proteasomal pathway independent of lipase activity. PLD2 increases PHD2-mediated hydroxylation of HIF-1α by increasing the interaction of HIF-1α with PHD2. Moreover, PLD2 promotes VHL-dependent HIF-1α degradation by accelerating the association between VHL and HIF-1α. The interaction of the pleckstrin homology domain of PLD2 with HIF-1α also promoted degradation of HIF-1α and decreased expression of its target genes. These results indicate that PLD2 negatively regulates the stability of HIF-1α through the dynamic assembly of HIF-1α, PHD2 and VHL.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: