Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Mother to offspring transmission of chronic wasting disease in reeves' muntjac deer.

  • Amy V Nalls‎ et al.
  • PloS one‎
  • 2013‎

The horizontal transmission of prion diseases has been well characterized in bovine spongiform encephalopathy (BSE), chronic wasting disease (CWD) of deer and elk and scrapie of sheep, and has been regarded as the primary mode of transmission. Few studies have monitored the possibility of vertical transmission occurring within an infected mother during pregnancy. To study the potential for and pathway of vertical transmission of CWD in the native cervid species, we used a small cervid model-the polyestrous breeding, indoor maintainable, Reeves' muntjac deer-and determined that the susceptibility and pathogenesis of CWD in these deer reproduce that in native mule and white-tailed deer. Moreover, we demonstrate here that CWD prions are transmitted from doe to fawn. Maternal CWD infection also appears to result in lower percentage of live birth offspring. In addition, evolving evidence from protein misfolding cyclic amplification (PMCA) assays on fetal tissues suggest that covert prion infection occurs in utero. Overall, our findings demonstrate that transmission of prions from mother to offspring can occur, and may be underestimated for all prion diseases.


Re-examination of feline leukemia virus: host relationships using real-time PCR.

  • Andrea N Torres‎ et al.
  • Virology‎
  • 2005‎

The mechanisms responsible for effective vs. ineffective viral containment are central to immunoprevention and therapies of retroviral infections. Feline leukemia virus (FeLV) infection is unique as a naturally occurring, diametric example of effective vs. ineffective retroviral containment by the host. We developed a sensitive quantitative real-time DNA PCR assay specific for exogenous FeLV to further explore the FeLV-host relationship. By assaying p27 capsid antigen in blood and FeLV DNA in blood and tissues of successfully vaccinated, unsuccessfully vaccinated, and unvaccinated pathogen-free cats, we defined four statistically separable classes of FeLV infection, provisionally designated as abortive, regressive, latent, and progressive. These host-virus relationships were established by 8 weeks post-challenge and could be maintained for years. Real-time PCR methods offer promise in gaining deeper insight into the mechanisms of FeLV infection and immunity.


Maternal Influenza A Virus Infection Restricts Fetal and Placental Growth and Adversely Affects the Fetal Thymic Transcriptome.

  • Hana Van Campen‎ et al.
  • Viruses‎
  • 2020‎

Maternal influenza A viral infections in humans are associated with low birth weight, increased risk of pre-term birth, stillbirth and congenital defects. To examine the effect of maternal influenza virus infection on placental and fetal growth, pregnant C57BL/6 mice were inoculated intranasally with influenza A virus A/CA/07/2009 pandemic H1N1 or phosphate-buffered saline (PBS) at E3.5, E7.5 or E12.5, and the placentae and fetuses collected and weighed at E18.5. Fetal thymuses were pooled from each litter. Placentae were examined histologically, stained by immunohistochemistry (IHC) for CD34 (hematopoietic progenitor cell antigen) and vascular channels quantified. RNA from E7.5 and E12.5 placentae and E7.5 fetal thymuses was subjected to RNA sequencing and pathway analysis. Placental weights were decreased in litters inoculated with influenza at E3.5 and E7.5. Placentae from E7.5 and E12.5 inoculated litters exhibited decreased labyrinth development and the transmembrane protein 150A gene was upregulated in E7.5 placentae. Fetal weights were decreased in litters inoculated at E7.5 and E12.5 compared to controls. RNA sequencing of E7.5 thymuses indicated that 957 genes were downregulated ≥2-fold including Mal, which is associated with Toll-like receptor signaling and T cell differentiation. There were 28 upregulated genes. It is concluded that maternal influenza A virus infection impairs fetal thymic gene expression as well as restricting placental and fetal growth.


Shedding and stability of CWD prion seeding activity in cervid feces.

  • Joanne M Tennant‎ et al.
  • PloS one‎
  • 2020‎

CWD is an emergent prion disease that now affects cervid species on three continents. CWD is efficiently spread in wild and captive populations, likely through both direct animal contact and environmental contamination. Here, by longitudinally assaying in feces of CWD-exposed white-tailed deer by RT-QuIC, we demonstrate fecal shedding of prion seeding activity months before onset of clinical symptoms and continuing throughout the disease course. We also examine the impact of simulated environmental conditions such as repeated freeze-thaw cycles and desiccation on fecal prion seeding activity. We found that while multiple (n = 7) freeze-thaw cycles substantially decreased fecal seeding activity, desiccation had little to no effect on seeding activity. Finally, we examined whether RT-QuIC testing of landscape fecal deposits could distinguish two premises with substantial known CWD prevalence from one in which no CWD-infected animals had been detected. In the above pilot study, this distinction was possible. We conclude that fecal shedding of CWD prions occurs over much of the disease course, that environmental factors influence prion seeding activity, and that it is feasible to detect fecal prion contamination using RT-QuIC.


Comparison of conventional, amplification and bio-assay detection methods for a chronic wasting disease inoculum pool.

  • Erin McNulty‎ et al.
  • PloS one‎
  • 2019‎

Longitudinal studies of chronic wasting disease (CWD) in the native host have provided considerable understanding of how this prion disease continues to efficiently spread among cervid species. These studies entail great cost in animal, time and financial support. A variety of methods have emerged including transgenic mouse bioassay, western blot, enzyme-linked immunoassay (ELISA), immunohistochemistry (IHC), serial protein misfolding cyclic amplification (sPMCA) and real time quaking-induced conversion (RT-QuIC), that deepen our understanding of this and other protein misfolding disorders. To further characterize an inoculum source used for ongoing CWD studies and to determine how the readouts from each of these assays compare, we assayed a CWD-positive brain pool homogenate (CBP6) and a mouse dilutional bioassay of this homogenate using the above detection methods. We demonstrate that: (i) amplification assays enhanced detection of amyloid seeding activity in the CWD+ cervid brain pool to levels beyond mouse LD50, (ii) conventional detection methods (IHC and western blot) performed well in identifying the presence of PrPSc in terminal brain tissue yet lack sufficient detection sensitivity to identify all CWD-infected mice, and (iii) the incorporation of amplification assays enhanced detection of CWD-infected mice near the LD50. This cross-platform analysis provides a basis to calibrate the relative sensitivities of CWD detection assays.


In vitro detection of prionemia in TSE-infected cervids and hamsters.

  • Alan M Elder‎ et al.
  • PloS one‎
  • 2013‎

Blood-borne transmission of infectious prions during the symptomatic and asymptomatic stages of disease occurs for both human and animal transmissible spongiform encephalopathies (TSEs). The geographical distribution of the cervid TSE, chronic wasting disease (CWD), continues to spread across North America and the prospective number of individuals harboring an asymptomatic infection of human variant Creutzfeldt-Jakob Disease (vCJD) in the United Kingdom has been projected to be ~1 in 3000 residents. Thus, it is important to monitor cervid and human blood products to ensure herd health and human safety. Current methods for detecting blood-associated prions rely primarily upon bioassay in laboratory animals. While bioassay provides high sensitivity and specificity, it requires many months, animals, and it is costly. Here we report modification of the real time quaking-induced conversion (RT-QuIC) assay to detect blood-borne prions in whole blood from prion-infected preclinical white-tailed deer, muntjac deer, and Syrian hamsters, attaining sensitivity of >90% while maintaining 100% specificity. Our results indicate that RT-QuIC methodology as modified can provide consistent and reliable detection of blood-borne prions in preclinical and symptomatic stages of two animal TSEs, offering promise for prionemia detection in other species, including humans.


PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer.

  • Kristen A Davenport‎ et al.
  • PloS one‎
  • 2017‎

The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs.


Progression of chronic wasting disease in white-tailed deer analyzed by serial biopsy RT-QuIC and immunohistochemistry.

  • Davin M Henderson‎ et al.
  • PloS one‎
  • 2020‎

Chronic wasting disease (CWD) continues to spread or be recognized in the United States, Canada, and Europe. CWD is diagnosed by demonstration of the causative misfolded prion protein (PrPCWD) in either brain or lymphoid tissue using immunodetection methods, with immunohistochemistry (IHC) recognized as the gold standard. In recent years, in vitro amplification assays have been developed that can detect CWD prion seeding activity in tissues, excreta, and body fluids of affected cervids. These methods potentially offer earlier and more facile detection of CWD, both pre- and post-mortem. Here we provide a longitudinal profile of CWD infection progression, as assessed by both real-time quaking-induced conversion (RT-QuIC) and IHC on serial biopsies of mucosal lymphoid tissues of white-tailed deer orally exposed to low doses of CWD prions. We report that detection of CWD infection by RT-QuIC preceded that by IHC in both tonsil and recto-anal lymphoid tissue (RAMALT) in 14 of 19 deer (74%). Of the 322 biopsy samples collected in post-exposure longitudinal monitoring, positive RT-QuIC results were obtained for 146 samples, 91 of which (62%) were concurrently also IHC-positive. The lower frequency of IHC positivity was manifest most in the earlier post-exposure periods and in biopsies in which lymphoid follicles were not detected. For all deer in which RT-QuIC seeding activity was detected in a tonsil or RAMALT biopsy, PrPCWD was subsequently or concurrently detected by IHC. Overall, this study (a) provides a longitudinal profile of CWD infection in deer after low yet infectious oral prion exposure; (b) illustrates the value of RT-QuIC for sensitive detection of CWD; and (c) demonstrates an ultimate high degree of correlation between RT-QuIC and IHC positivity as CWD infection progresses.


PrPSc formation and clearance as determinants of prion tropism.

  • Ronald A Shikiya‎ et al.
  • PLoS pathogens‎
  • 2017‎

Prion strains are characterized by strain-specific differences in neuropathology but can also differ in incubation period, clinical disease, host-range and tissue tropism. The hyper (HY) and drowsy (DY) strains of hamster-adapted transmissible mink encephalopathy (TME) differ in tissue tropism and susceptibility to infection by extraneural routes of infection. Notably, DY TME is not detected in the secondary lymphoreticular system (LRS) tissues of infected hosts regardless of the route of inoculation. We found that similar to the lymphotropic strain HY TME, DY TME crosses mucosal epithelia, enters draining lymphatic vessels in underlying laminae propriae, and is transported to LRS tissues. Since DY TME causes disease once it enters the peripheral nervous system, the restriction in DY TME pathogenesis is due to its inability to establish infection in LRS tissues, not a failure of transport. To determine if LRS tissues can support DY TME formation, we performed protein misfolding cyclic amplification using DY PrPSc as the seed and spleen homogenate as the source of PrPC. We found that the spleen environment can support DY PrPSc formation, although at lower rates compared to lymphotropic strains, suggesting that the failure of DY TME to establish infection in the spleen is not due to the absence of a strain-specific conversion cofactor. Finally, we provide evidence that DY PrPSc is more susceptible to degradation when compared to PrPSc from other lymphotrophic strains. We hypothesize that the relative rates of PrPSc formation and clearance can influence prion tropism.


Detection and Quantification of CWD Prions in Fixed Paraffin Embedded Tissues by Real-Time Quaking-Induced Conversion.

  • Clare E Hoover‎ et al.
  • Scientific reports‎
  • 2016‎

Traditional diagnostic detection of chronic wasting disease (CWD) relies on immunodetection of misfolded CWD prion protein (PrP(CWD)) by western blotting, ELISA, or immunohistochemistry (IHC). These techniques require separate sample collections (frozen and fixed) which may result in discrepancies due to variation in prion tissue distribution and assay sensitivities that limit detection especially in early and subclinical infections. Here, we harness the power of real-time quaking induced conversion (RT-QuIC) to amplify, detect, and quantify prion amyloid seeding activity in fixed paraffin-embedded (FPE) tissue sections. We show that FPE RT-QuIC has greater detection sensitivity than IHC in tissues with low PrP(CWD) burdens, including those that are IHC-negative. We also employ amyloid formation kinetics to yield a semi-quantitative estimate of prion concentration in a given FPE tissue. We report that FPE RT-QuIC has the ability to enhance diagnostic and investigative detection of disease-associated PrP(RES) in prion, and potentially other, protein misfolding disease states.


Clearance of variant Creutzfeldt-Jakob disease prions in vivo by the Hsp70 disaggregase system.

  • Alana M Thackray‎ et al.
  • Brain : a journal of neurology‎
  • 2022‎

The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt-Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt-Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.


Involvement of N- and C-terminal region of recombinant cervid prion protein in its reactivity to CWD and atypical BSE prions in real-time quaking-induced conversion reaction in the presence of high concentrations of tissue homogenates.

  • Akio Suzuki‎ et al.
  • Prion‎
  • 2020‎

The real-time quaking-induced conversion (RT-QuIC) reaction is a sensitive and specific method for detecting prions. However, inhibitory factors present in tissue homogenates can easily interfere with this reaction. To identify the RT-QuIC condition under which low levels of chronic wasting disease (CWD) and bovine spongiform encephalopathy (BSE) prions can be detected in the presence of high concentrations of brain tissue homogenates, reactivities of various recombinant prion proteins (rPrPs) were tested. Among the tested rPrPs, recombinant cervid PrP (rCerPrP) showed a unique reactivity: the reactivity of rCerPrP to CWD and atypical BSE prions was not highly affected by high concentrations of normal brain homogenates. The unique reactivity of rCerPrP disappeared when the N-terminal region (aa 25-93) was truncated. Replacement of aa 23-149 of mouse (Mo) PrP with the corresponding region of CerPrP partially restored the unique reactivity of rCerPrP in RT-QuIC. Replacement of the extreme C-terminal region of MoPrP aa 219-231 to the corresponding region of CerPrP partially conferred the unique reactivity of rCerPrP to rMoPrP, suggesting the involvement of both N- and C-terminal regions. Additionally, rCerN-Mo-CerCPrP, a chimeric PrP comprising CerPrP aa 25-153, MoPrP aa 150-218, and CerPrP aa 223-233, showed an additive effect of the N- and C-terminal regions. These results provide a mechanistic implication for detecting CWD and atypical BSE prions using rCerPrP and are useful for further improvements of RT-QuIC.


Genetic modulation of CWD prion propagation in cervid PrP Drosophila.

  • Alana M Thackray‎ et al.
  • The Biochemical journal‎
  • 2023‎

Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.


Characterization of subclinical ZIKV infection in immune-competent guinea pigs and mice.

  • Joseph A Westrich‎ et al.
  • The Journal of general virology‎
  • 2021‎

An infectious agent's pathogenic and transmission potential is heavily influenced by early events during the asymptomatic or subclinical phase of disease. During this phase, the presence of infectious agent may be relatively low. An important example of this is Zika virus (ZIKV), which can cross the placenta and infect the foetus, even in mothers with subclinical infections. These subclinical infections represent roughly 80 % of all human infections. Initial ZIKV pathogenesis studies were performed in type I interferon receptor (IFNAR) knockout mice. Blunting the interferon response resulted in robust infectivity, and increased the utility of mice to model ZIKV infections. However, due to the removal of the interferon response, the use of these models impedes full characterization of immune responses to ZIKV-related pathologies. Moreover, IFNAR-deficient models represent severe disease whereas less is known regarding subclinical infections. Investigation of the anti-viral immune response elicited at the maternal-foetal interface is critical to fully understand mechanisms involved in foetal infection, foetal development, and disease processes recognized to occur during subclinical maternal infections. Thus, immunocompetent experimental models that recapitulate natural infections are needed. We have established subclinical intravaginal ZIKV infections in mice and guinea pigs. We found that these infections resulted in: the presence of both ZIKV RNA transcripts and infectious virus in maternal and placental tissues, establishment of foetal infections and ZIKV-mediated CXCL10 expression. These models will aid in discerning the mechanisms of subclinical ZIKV mother-to-offspring transmission, and by extension can be used to investigate other maternal infections that impact foetal development.


Detection of CWD in cervids by RT-QuIC assay of third eyelids.

  • Sarah K Cooper‎ et al.
  • PloS one‎
  • 2019‎

The diagnosis of chronic wasting disease (CWD) relies on demonstration of the disease-associated misfolded CWD prion protein (PrPCWD) in brain or retropharyngeal lymph node tissue by immunodetection methods, e.g. ELISA and immunohistochemistry (IHC). The success of these methods relies on a quality sample of tissues, which requires both anatomical knowledge and considerable dissection to collect. As the prevalence of CWD continues to increase globally, the development of fast and cost-effective methods to detect the disease is vital to facilitate CWD detection and surveillance. To address these issues, we have evaluated third eyelids from CWD-infected deer and elk using real-time quaking induced conversion (RT-QuIC). We identified prion seeding activity in third eyelids in 24 of 25 (96%) CWD-infected white-tailed deer (Odocoileus virginianus). We detected RT-QuIC positivity in the third eyelid as early as 1 month after experimental CWD exposure. In addition, we identified prion seeding activity in third eyelids of 18 of 25 (72%) naturally exposed asymptomatic CWD-positive rocky mountain elk (Cervus canadensis nelson). We compared CWD detection by RT-QuIC and IHC in third eyelid, retropharyngeal lymph node, and brain in 10 deer in early symptomatic stage of disease. IHC detected PrPCWD deposition in third eyelid lymphoid follicles in 5 of 10 deer (50%) whereas third eyelids of all 10 animals were positive by RT-QuIC. This difference reflected in part a lower requirement for lymphoid follicle presence for seeding activity detection by RT-QuIC. In conclusion, RT-QuIC analysis of the third eyelid, an easily accessed tissue, has potential to advance CWD detection and testing compliance.


Monitoring longitudinal immunological responses to bluetongue virus 17 in experimentally infected sheep.

  • Joseph A Westrich‎ et al.
  • Virus research‎
  • 2023‎

Bluetongue virus (BTV) is an economically important pathogen of ruminant species with worldwide prevalence. While many BTV infections are asymptomatic, animals with symptomatic presentation deteriorate quickly with the sickest succumbing to disease within one week. Animals that survive the infection often require months to recover. The immune response to BTV infection is thought to play a central role in controlling the disease. Key to understanding BTV disease is profiling vertebrate host immunological cellular and cytokine responses. Studies to characterize immune responses in ruminants have been limited by a lack of species-specific reagents and assay technology. Here we assess the longitudinal immunological response to experimental BTV-17-California (CA) infection in sheep using the most up to date assays. We infected a cohort of sheep with BTV-17-CA and longitudinally monitored each animal for clinical disease, viremia and specific immunological parameters (B cells, T cells, monocytes) by RT-qPCR, traditional flow cytometry and/or fluorescent based antibody arrays. BTV-inoculated sheep exhibited clinical signs characteristic of bluetongue virus disease. Circulating virus was demonstrated after 8 days post inoculation (DPI) and remained detectable for the remainder of the time course (24 DPI). A distinct lymphopenia was observed between 7 and 14 DPI that rebounded to mock-inoculated control levels at 17 DPI. In addition, we observed increased expression of pro-inflammatory cytokines after 8 DPI. Taken together, we have established a model of BTV infection in sheep and have successfully monitored the longitudinal vertebrate host immunological response and viral infection progression using a combination of traditional methods and cutting-edge technology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: