Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

  • Rajiv Sainath‎ et al.
  • PloS one‎
  • 2013‎

During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch morphogenesis by destabilizing membrane protrusions before the growth cone completes navigation into the synaptic target field.


A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

  • Santanu Banerjee‎ et al.
  • PloS one‎
  • 2013‎

During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.


Optic nerve regeneration in larval zebrafish exhibits spontaneous capacity for retinotopic but not tectum specific axon targeting.

  • Beth M Harvey‎ et al.
  • PloS one‎
  • 2019‎

In contrast to mammals, retinal ganglion cells (RGC) axons of the optic nerve even in mature zebrafish exhibit a remarkable capacity for spontaneous regeneration. One constraint of using adult zebrafish is the limited ability to visualize the regeneration process in live animals. To dynamically visualize and trace the degree of target specific optic nerve regeneration, we took advantage of the optical transparency still preserved in post developmental larval zebrafish. We developed a rapid and robust assay to physically transect the larval optic nerve and find that by 96 hours post injury RGC axons have robustly regrown onto the optic tectum. We observe functional regeneration by 8 days post injury, and demonstrate that similar to adult zebrafish, optic nerve transection in larval zebrafish does not prominently induce cell death or proliferation of RGC neurons. Furthermore, we find that partial optic nerve transection results in axonal growth predominantly to the original, contralateral tectum, while complete transection results in innervation of both the correct contralateral and 'incorrect' ipsilateral tectum. Axonal tracing reveals that although regenerating axons innervate the 'incorrect' ipsilateral tectum, they successfully target their topographically appropriate synaptic areas. Combined, our results validate post developmental larval zebrafish as a powerful model for optic nerve regeneration, and reveal intricate mechanistic differences between axonal growth, midline guidance and synaptic targeting during zebrafish optic nerve regeneration.


Molecular-genetic mapping of zebrafish mutants with variable phenotypic penetrance.

  • Roshan A Jain‎ et al.
  • PloS one‎
  • 2011‎

Forward genetic screens in vertebrates are powerful tools to generate models relevant to human diseases, including neuropsychiatric disorders. Variability in phenotypic penetrance and expressivity is common in these disorders and behavioral mutant models, making their molecular-genetic mapping a formidable task. Using a 'phenotyping by segregation' strategy, we molecularly map the hypersensitive zebrafish houdini mutant despite its variable phenotypic penetrance, providing a generally applicable strategy to map zebrafish mutants with subtle phenotypes.


Temporal and spatial requirements of unplugged/MuSK function during zebrafish neuromuscular development.

  • Lili Jing‎ et al.
  • PloS one‎
  • 2010‎

One of the earliest events in neuromuscular junction (NMJ) development is the accumulation of acetylcholine receptor (AChR) at the center of muscle cells. The unplugged/MuSK (muscle specific tyrosine kinase) gene is essential to initiate AChR clustering but also to restrict approaching growth cones to the muscle center, thereby coordinating pre- and postsynaptic development. To determine how unplugged/MuSK signaling coordinates these two processes, we examined the temporal and spatial requirements of unplugged/MuSK in zebrafish embryos using heat-shock inducible transgenes. Here, we show that despite its expression in muscle cells from the time they differentiate, unplugged/MuSK activity is first required just prior to the appearance of AChR clusters to simultaneously induce AChR accumulation and to guide motor axons. Furthermore, we demonstrate that ectopic expression of unplugged/MuSK throughout the muscle membrane results in wildtype-like AChR prepattern and neuromuscular synapses in the central region of muscle cells. We propose that AChR prepatterning and axonal guidance are spatio-temporally coordinated through common unplugged/MuSK signals, and that additional factor(s) restrict unplugged/MuSK signaling to a central muscle zone critical for establishing mid-muscle synaptogenesis.


A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish.

  • Juliane Bremer‎ et al.
  • PloS one‎
  • 2017‎

Adult vertebrates have retained the ability to regenerate peripheral nerves after injury, although regeneration is frequently incomplete, often leading to functional impairments. Small molecule screens using whole organisms have high potential to identify biologically relevant targets, yet currently available assays for in vivo peripheral nerve regeneration are either very laborious and/or require complex technology. Here we take advantage of the optical transparency of larval zebrafish to develop a simple and fast pectoral fin removal assay that measures peripheral nerve regeneration in vivo. Twenty-four hours after fin amputation we observe robust and stereotyped nerve regrowth at the fin base. Similar to laser mediated nerve transection, nerve regrowth after fin amputation requires Schwann cells and FGF signaling, confirming that the fin amputation assay identifies pathways relevant for peripheral nerve regeneration. From a library of small molecules with known targets, we identified 21 compounds that impair peripheral nerve regeneration. Several of these compounds target known regulators of nerve regeneration, further validating the fin removal assay. Twelve of the identified compounds affect targets not previously known to control peripheral nerve regeneration. Using a laser-mediated nerve transection assay we tested ten of those compounds and confirmed six of these compounds to impair peripheral nerve regeneration: an EGFR inhibitor, a glucocorticoid, prostaglandin D2, a retinoic acid agonist, an inhibitor of calcium channels and a topoisomerase I inhibitor. Thus, we established a technically simple assay to rapidly identify valuable entry points into pathways critical for vertebrate peripheral nerve regeneration.


cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold.

  • Nicholas J Santistevan‎ et al.
  • PloS one‎
  • 2022‎

The ability to filter sensory information into relevant versus irrelevant stimuli is a fundamental, conserved property of the central nervous system and is accomplished in part through habituation learning. Synaptic plasticity that underlies habituation learning has been described at the cellular level, yet the genetic regulators of this plasticity remain poorly understood, as do circuits that mediate sensory filtering.


Multivariate analysis of variegated expression in Neurons: A strategy for unbiased localization of gene function to candidate brain regions in larval zebrafish.

  • Hannah Shoenhard‎ et al.
  • PloS one‎
  • 2023‎

Behavioral screens in model organisms have greatly facilitated the identification of genes and genetic pathways that regulate defined behaviors. Identifying the neural circuitry via which specific genes function to modify behavior remains a significant challenge in the field. Tissue- and cell type-specific knockout, knockdown, and rescue experiments serve this purpose, yet in zebrafish screening through dozens of candidate cell-type-specific and brain-region specific driver lines for their ability to rescue a mutant phenotype remains a bottleneck. Here we report on an alternative strategy that takes advantage of the variegation often present in Gal4-driven UAS lines to express a rescue construct in a neuronal tissue-specific and variegated manner. We developed and validated a computational pipeline that identifies specific brain regions where expression levels of the variegated rescue construct correlate with rescue of a mutant phenotype, indicating that gene expression levels in these regions may causally influence behavior. We termed this unbiased correlative approach Multivariate Analysis of Variegated Expression in Neurons (MAVEN). The MAVEN strategy advances the user's capacity to quickly identify candidate brain regions where gene function may be relevant to a behavioral phenotype. This allows the user to skip or greatly reduce screening for rescue and proceed to experimental validation of candidate brain regions via genetically targeted approaches. MAVEN thus facilitates identification of brain regions in which specific genes function to regulate larval zebrafish behavior.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: