Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Germline Variants in 32 Cancer-Related Genes among 700 Chinese Breast Cancer Patients by Next-Generation Sequencing: A Clinic-Based, Observational Study.

  • Liu Yang‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Breast cancer (BC) is associated with hereditary components, and some deleterious germline variants have been regarded as effective therapeutic targets. We conducted a clinic-based, observational study to better understand the distribution of deleterious germline variants and assess any clinicopathological predictors related to the variants among Chinese BC patients using a 32 cancer-related genes next-generation sequencing panel. Between November 2020 and February 2022, a total of 700 BC patients were recruited, and 13.1% (92/700) of them carried deleterious germline variants in 15 cancer-related genes, including 37 (37/700, 5.3%) in BRCA2, 29 (29/700, 4.1%) in BRCA1, 8 (8/700, 1.1%) in PALB2, 4 (4/700, 0.6%) in NBN, 3 (3/700, 0.4%) in MRE11A, 3 (3/700, 0.4%) in TP53 and 12 (12/700, 1.7%) in other genes. There were 28 novel variants detected: 5 in BRCA1, 14 in BRCA2, and 9 in non-BRCA1/2 genes. The variants in panel genes, HRR (homologous recombination repair)-related genes, and BRCA1/2 were significantly associated with the following clinicopathological factors: age at the initial diagnosis of BC, family history of any cancer, molecular subtype, Ki-67 index, and hereditary risk. In conclusion, we further expanded the spectrum of germline deleterious variants in Chinese BC patients, and the clinicopathological predictors of variants were identified to facilitate clinical genetic testing and counseling for appropriate individuals.


Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-Mediated Type I Interferon Production.

  • Jin Zhao‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Deeply understanding the virus-host interaction is a prerequisite for developing effective anti-viral strategies. Traditionally, the transporter associated with antigen processing type 1 (TAP1) is critical for antigen presentation to regulate adaptive immunity. However, its role in controlling viral infections through modulating innate immune signaling is not yet fully understood. In the present study, we reported that TAP1, as a product of interferon-stimulated genes (ISGs), had broadly antiviral activity against various viruses such as herpes simplex virus 1 (HSV-1), adenoviruses (AdV), vesicular stomatitis virus (VSV), dengue virus (DENV), Zika virus (ZIKV), and influenza virus (PR8) etc. This antiviral activity by TAP1 was further confirmed by series of loss-of-function and gain-of-function experiments. Our further investigation revealed that TAP1 significantly promoted the interferon (IFN)-β production through activating the TANK binding kinase-1 (TBK1) and the interferon regulatory factor 3 (IRF3) signaling transduction. Our work highlighted the broadly anti-viral function of TAP1 by modulating innate immunity, which is independent of its well-known function of antigen presentation. This study will provide insights into developing novel vaccination and immunotherapy strategies against emerging infectious diseases.


Nobiletin Delays Aging and Enhances Stress Resistance of Caenorhabditis elegans.

  • Xueyan Yang‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Nobiletin (NOB), one of polymethoxyflavone existing in citrus fruits, has been reported to exhibit a multitude of biological properties, including anti-inflammation, anti-oxidation, anti-atherosclerosis, neuroprotection, and anti-tumor activity. However, little is known about the anti-aging effect of NOB. The objective of this study was to determine the effects of NOB on lifespan, stress resistance, and its associated gene expression. Using Caenorhabditis elegans, an in vivo nematode model, we found that NOB remarkably extended the lifespan; slowed aging-related functional declines; and increased the resistance against various stressors, including heat shock and ultraviolet radiation. Also, NOB reduced the effects of paraquat stressor on nematodes and scavenged reactive oxygen species (ROS). Furthermore, gene expression revealed that NOB upregulated the expression of sod-3, hsp-16.2, gst-4, skn-1, sek-1, and sir-2.1, which was suggested that anti-aging activity of NOB was mediated most likely by activation of the target genes of the transcription factors including dauer formation (DAF)-16, heat-shock transcription factor (HSF)-1, and skinhead (SKN)-1. In summary, NOB has potential application in extension of lifespan, and its associated healthspan and stress resistances.


IFN-Inducible SerpinA5 Triggers Antiviral Immunity by Regulating STAT1 Phosphorylation and Nuclear Translocation.

  • Congcong Wang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Deeply understanding virus-host interactions is a prerequisite for developing effective strategies to control frequently emerging infectious diseases, which have become a serious challenge for global public health. The type I interferon (IFN)-mediated JAK/STAT pathway is well known for playing an essential role in host antiviral immunity, but the exact regulatory mechanisms of various IFN-stimulated genes (ISGs) are not yet fully understood. We herein reported that SerpinA5, as a novel ISG, played a previously unrecognized role in antiviral activity. Mechanistically, SerpinA5 can upregulate the phosphorylation of STAT1 and promote its nuclear translocation, thus effectively activating the transcription of IFN-related signaling pathways to impair viral infections. Our data provide insights into SerpinA5-mediated innate immune signaling during virus-host interactions.


Administration of Recombinant TAPBPL Protein Ameliorates Collagen-Induced Arthritis in Mice.

  • Zhenzhen Zhang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease distinguished by synovial hyperplasia and a progressive destruction of joints. T cells are critical players in the pathogenesis of RA. We have previously identified a novel immune checkpoint molecule, TAPBPL, that inhibits T cell functions in vitro. As a model for human RA, we investigated the ability of the TAPBPL protein to ameliorate collagen type II (CII)-induced arthritis (CIA) in mice that were injected with recombinant TAPBPL or a control protein. The mice were analyzed for CIA development, immune cells, and their responses. We found that TAPBPL protein significantly decreased CIA incidence and reduced clinical and pathological arthritis scores, which were related to a lower number of activated CD4 T cells but a greater number of regulatory T cells (Tregs) in the spleen, and a reduction of Th1/Th17 inflammatory cytokines in the joints and serum. Importantly, TAPBPL protein inhibited CII-specific T cell growth and Th1 and Th17 cytokine expression and reduced the production of CII autoantibodies in the serum. Our results suggest that TAPBPL protein can ameliorate CIA in mice and has the potential to be used in the treatment of patients with RA.


Nogo-A Induced Polymerization of Microtubule Is Involved in the Inflammatory Heat Hyperalgesia in Rat Dorsal Root Ganglion Neurons.

  • Ling Chen‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The microtubule, a major constituent of cytoskeletons, was shown to bind and interact with transient receptor potential vanilloid subfamily member 1 (TRPV1), and serves a pivotal role to produce thermal hyperalgesia in inflammatory pain. Nogo-A is a modulator of microtubule assembly and plays a key role in maintaining the function of TRPV1 in inflammatory heat pain. However, whether the microtubule dynamics modulated by Nogo-A in dorsal root ganglion (DRG) neurons participate in the inflammatory pain is not elucidated. Here we reported that the polymerization of microtubules in the DRG neurons, as indicated by the acetylated α-tubulin, tubulin polymerization-promoting protein 3 (TPPP3), and microtubule numbers, was significantly elevated in the complete Freund's adjuvant (CFA) induced inflammatory pain. Consistent with our previous results, knock-out (KO) of Nogo-A protein significantly attenuated the heat hyperalgesia 72 h after CFA injection and decreased the microtubule polymerization via up-regulation of phosphorylation of collapsin response mediator protein 2 (CRMP2) in DRG. The colocalization of acetylated α-tubulin and TRPV1 in DRG neurons was also reduced dramatically in Nogo-A KO rats under inflammatory pain. Moreover, the down-regulation of TRPV1 in DRG of Nogo-A KO rats after injection of CFA was reversed by intrathecal injection of paclitaxel, a microtubule stabilizer. Furthermore, intrathecal injection of nocodazole (a microtubule disruptor) attenuated significantly the CFA-induced inflammatory heat hyperalgesia and the mechanical pain in a rat model of spared nerve injury (SNI). In these SNI cases, the Nogo-A and acetylated α-tubulin in DRG were also significantly up-regulated. We conclude that the polymerization of microtubules promoted by Nogo-A in DRG contributes to the development of inflammatory heat hyperalgesia mediated by TRPV1.


Depletion of Arg1-Positive Microglia/Macrophages Exacerbates Cerebral Ischemic Damage by Facilitating the Inflammatory Response.

  • Ting Li‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Stroke is a serious worldwide disease that causes death and disability, more than 80% of which is ischemic stroke. The expression of arginase 1 (Arg1), a key player in regulating nitrogen homeostasis, is altered in the peripheral circulation after stroke. Growing evidence indicates that ischemic stroke also induces upregulated Arg1 expression in the central nervous system, especially in activated microglia and macrophages. This implies that Arg1 may affect stroke progression by modulating the cerebral immune response. To investigate the effect of Arg1+ microglia/macrophages on ischemic stroke, we selectively eliminated cerebral Arg1+ microglia/macrophages by mannosylated clodronate liposomes (MCLs) and investigated their effects on behavior, neurological deficits, and inflammatory responses in mice after ischemic stroke. More than half of Arg1+ cells, mainly Arg1+ microglia/macrophages, were depleted after MCLs administration, resulting in a significant deterioration of motility in mice. After the elimination of Arg1+ microglia/macrophages, the infarct volume expanded and neuronal degenerative lesions intensified. Meanwhile, the absence of Arg1+ microglia/macrophages significantly increased the production of pro-inflammatory cytokines and suppressed the expression of anti-inflammatory factors, thus profoundly altering the immune microenvironment at the lesion site. Taken together, our data demonstrate that depletion of Arg1+ microglia/macrophages exacerbates neuronal damage by facilitating the inflammatory response, leading to more severe ischemic injury. These results suggest that Arg1+ microglia/macrophages, as a subpopulation regulating inflammation, is beneficial in controlling the development of ischemia and promoting recovery from injury. Regulation of Arg1 expression on microglia/macrophages at the right time may be a potential target for the treatment of ischemic brain injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: