Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage.

  • E Bobrovnikova-Marjon‎ et al.
  • Oncogene‎
  • 2010‎

To proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential antineoplastic targets. However, recent investigations into the role of the ER resident protein kinase, RNA-dependent protein kinase (PKR)-like ER kinase (PERK) have paradoxically suggested both pro- and anti-tumorigenic properties. We have used animal models of mammary carcinoma to interrogate the contribution of PERK in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle because of the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is used during both tumor initiation and expansion to maintain redox homeostasis, thereby facilitating tumor growth.


Modeling ductal carcinoma in situ: a HER2-Notch3 collaboration enables luminal filling.

  • C-R Pradeep‎ et al.
  • Oncogene‎
  • 2012‎

A large fraction of ductal carcinoma in situ (DCIS), a non-invasive precursor lesion of invasive breast cancer, overexpresses the HER2/neu oncogene. The ducts of DCIS are abnormally filled with cells that evade apoptosis, but the underlying mechanisms remain incompletely understood. We overexpressed HER2 in mammary epithelial cells and observed growth factor-independent proliferation. When grown in extracellular matrix as three-dimensional spheroids, control cells developed a hollow lumen, but HER2-overexpressing cells populated the lumen by evading apoptosis. We demonstrate that HER2 overexpression in this cellular model of DCIS drives transcriptional upregulation of multiple components of the Notch survival pathway. Importantly, luminal filling required upregulation of a signaling pathway comprising Notch3, its cleaved intracellular domain and the transcriptional regulator HES1, resulting in elevated levels of c-MYC and cyclin D1. In line with HER2-Notch3 collaboration, drugs intercepting either arm reverted the DCIS-like phenotype. In addition, we report upregulation of Notch3 in hyperplastic lesions of HER2 transgenic animals, as well as an association between HER2 levels and expression levels of components of the Notch pathway in tumor specimens of breast cancer patients. Therefore, it is conceivable that the integration of the Notch and HER2 signaling pathways contributes to the pathophysiology of DCIS.


Seasonal expression of androgen receptor, aromatase, and estrogen receptor alpha and beta in the testis of the wild ground squirrel (Citellus dauricus Brandt).

  • Q Li‎ et al.
  • European journal of histochemistry : EJH‎
  • 2015‎

The aim of this study was to investigate the seasonal expression of androgen receptor (AR), estrogen receptors α and β (ERα and ERβ) and aromatase cytochrome P450 (P450arom) mRNA and protein by real-time PCR and immunohistochemistry in the wild ground squirrel (WGS) testes. Histologically, all types of spermatogenic cells including mature spermatozoa were identified in the breeding season (April), while spermatogonia and primary spermatocytes were observed in the nonbreeding season (June), and spermatogonia, primary spermatocytes and secondary spermatocytes were found in pre-hibernation (September). AR was present in Leydig cells, peritubular myoid cells and Sertoli cells in the breeding season and pre-hibernation with more intense staining in the breeding season, whereas AR was only found in Leydig cells in the nonbreeding season; P450arom was expressed in Leydig cells, Sertoli cells and germ cells during the breeding season, whereas P450arom was found in Leydig cells and Sertoli cells during pre-hibernation, but P450arom was not present in the nonbreeding season; stronger immunohistochemical signal for ERα was present in Sertoli cells and Leydig cells during the breeding season; ERβ was only expressed in Leydig cells of the breeding season. Consistent with the immunohistochemical results, the mean mRNA level of AR, P450arom, ERα and ERβ were higher in the testes of the breeding season when compared to pre-hibernation and the nonbreeding season. These results suggested that the seasonal changes in spermatogenesis and testicular recrudescence and regression process in WGSs might be correlated with expression levels of AR, P450arom and ERs, and that estrogen and androgen may play an important autocrine/paracrine role to regulate seasonal testicular function.


CTLA4 enhances the osteogenic differentiation of allogeneic human mesenchymal stem cells in a model of immune activation.

  • F Dai‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2015‎

Allogeneic mesenchymal stem cells (allo-MSCs) have recently garnered increasing interest for their broad clinical therapy applications. Despite this, many studies have shown that allo-MSCs are associated with a high rate of graft rejection unless immunosuppressive therapy is administered to control allo-immune responses. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) is a co-inhibitory molecule expressed on T cells that mediates the inhibition of T-cell function. Here, we investigated the osteogenic differentiation potency of allo-MSCs in an activated immune system that mimics the in vivo allo-MSC grafting microenvironment and explored the immunomodulatory role of the helper T cell receptor CTLA4 in this process. We found that MSC osteogenic differentiation was inhibited in the presence of the activated immune response and that overexpression of CTLA4 in allo-MSCs suppressed the immune response and promoted osteogenic differentiation. Our results support the application of CTLA4-overexpressing allo-MSCs in bone tissue engineering.


AIB1 predicts bladder cancer outcome and promotes bladder cancer cell proliferation through AKT and E2F1.

  • Z-T Tong‎ et al.
  • British journal of cancer‎
  • 2013‎

We previously demonstrated that AIB1 overexpression is an independent molecular marker for shortened survival of bladder cancer (BC) patients. In this study, we characterised the role and molecular mechanisms of AIB1 in BC tumorigenicity.


Two-particle Bose-Einstein correlations in pp collisions at [Formula: see text] 0.9 and 7 TeV measured with the ATLAS detector.

  • G Aad‎ et al.
  • The European physical journal. C, Particles and fields‎
  • 2015‎

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range [Formula: see text] 100 MeV and [Formula: see text] 2.5 in proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 [Formula: see text]b[Formula: see text], 190 [Formula: see text]b[Formula: see text] and 12.4 nb[Formula: see text] for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.


JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma.

  • M-L Nairismägi‎ et al.
  • Leukemia‎
  • 2016‎

Epitheliotropic intestinal T-cell lymphoma (EITL, also known as type II enteropathy-associated T-cell lymphoma) is an aggressive intestinal disease with poor prognosis and its molecular alterations have not been comprehensively characterized. We aimed to identify actionable easy-to-screen alterations that would allow better diagnostics and/or treatment of this deadly disease. By performing whole-exome sequencing of four EITL tumor-normal pairs, followed by amplicon deep sequencing of 42 tumor samples, frequent alterations of the JAK-STAT and G-protein-coupled receptor (GPCR) signaling pathways were discovered in a large portion of samples. Specifically, STAT5B was mutated in a remarkable 63% of cases, JAK3 in 35% and GNAI2 in 24%, with the majority occurring at known activating hotspots in key functional domains. Moreover, STAT5B locus carried copy-neutral loss of heterozygosity resulting in the duplication of the mutant copy, suggesting the importance of mutant STAT5B dosage for the development of EITL. Dysregulation of the JAK-STAT and GPCR pathways was also supported by gene expression profiling and further verified in patient tumor samples. In vitro overexpression of GNAI2 mutants led to the upregulation of pERK1/2, a member of MEK-ERK pathway. Notably, inhibitors of both JAK-STAT and MEK-ERK pathways effectively reduced viability of patient-derived primary EITL cells, indicating potential therapeutic strategies for this neoplasm with no effective treatment currently available.


Newly Emerged Porcine Deltacoronavirus Associated With Diarrhoea in Swine in China: Identification, Prevalence and Full-Length Genome Sequence Analysis.

  • D Song‎ et al.
  • Transboundary and emerging diseases‎
  • 2015‎

To identify and characterize aetiologic agent(s) associated with an outbreak of a severe diarrhoea in piglets in Jiangxi, China, in March 2015, a nested reverse transcription-polymerase chain reaction (RT-PCR) for the detection of porcine deltacoronavirus (PDCoV) was developed. A survey based on the nested RT-PCR established indicated that the monoinfection of PDCoV (33.71%) and coinfection of PDCoV (19.66%) with porcine epidemic diarrhoea virus (PEDV) were common in diarrhoeal pigs in Jiangxi, China. A high prevalence of PDCoV (58.33%) in diarrhoeal samples which were PEDV negative was observed. The complete genome sequence of a representative PDCoV strain, PDCoV/CHJXNI2/2015, was determined. Phylogenetic analysis of complete genome and S protein sequences of PDCoV/CHJXNI2/2015 demonstrated that it was most closely related to Hong Kong and US PDCoVs. To our knowledge, this is the first report on the identification, prevalence, complete genome sequencing and molecular characterizations of PDCoV in diarrhoeal samples in pigs in China.


Seasonal changes of androgen receptor, estrogen receptors and aromatase expression in the medial preoptic area of the wild male ground squirrels (Citellus dauricus Brandt).

  • F Zhang‎ et al.
  • European journal of histochemistry : EJH‎
  • 2016‎

The wild ground squirrel is a typical seasonal breeder. In this study, using RT-PCR, western blot and immunohistochemistry, we investigated the mRNA and protein expressions of androgen receptor (AR), estrogen receptors α and β (ERα and ERβ) and aromatase cytochrome P450 (P450arom) in the medial preoptic area (MPOA) of hypothalamus of the wild male ground squirrel during the breeding season (April), the non-breeding season (June) and pre-hibernation (September). AR, ERα, ERβ and P450arom protein/mRNA were present in the MPOA of all seasons detected. The immunostaining of AR and ERα showed no significant changes in different periods, whereas ERβ and P450arom had higher immunoreactivities during the breeding season and pre-hibernation when compared to those of the non-breeding season. Consistently, both the protein and mRNA levels of P450arom and ERβ were higher in the MPOA of pre-hibernation and the breeding season than in the non-breeding season, whereas no significant difference amongst the three periods was observed for AR and ERα levels. These findings suggested that the MPOA of hypothalamus may be a direct target of androgen and estrogen. Androgen may play important regulatory roles through its receptor and/or the aromatized estrogen in the MPOA of hypothalamus of the wild male ground squirrels.


Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize.

  • F Zhang‎ et al.
  • BMC ecology‎
  • 2019‎

Vegetation water content is one of the important biophysical features of vegetation health, and its remote estimation can be utilized to real-timely monitor vegetation water stress. Here, we compared the responses of canopy water content (CWC), leaf equivalent water thickness (EWT), and live fuel moisture content (LFMC) to different water treatments and their estimations using spectral vegetation indices (VIs) based on water stress experiments for summer maize during three consecutive growing seasons 2013-2015 in North Plain China.


Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density.

  • W Wang‎ et al.
  • Bone & joint research‎
  • 2017‎

Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data METHOD: We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients' BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05.


Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis.

  • F Zhang‎ et al.
  • Oncogene‎
  • 2018‎

Evasion of forkhead box O (FOXO) family of longevity-related transcription factors-mediated growth suppression is necessary to promote cancer development. Since somatic alterations or mutations and transcriptional dysregulation of the FOXO genes are infrequent in human cancers, it remains unclear how these tumour suppressors are eliminated from cancer cells. The protein stability of FOXO3A is regulated by Casein Kinase 1 alpha (CK1α) in an oncogenic RAS-specific manner, but whether this mode of regulation extends to related FOXO family members is unknown. Here we report that CK1α similarly destabilizes FOXO4 in RAS-mutant cells by phosphorylation at serines 265/268. The CK1α-dependent phosphoregulation of FOXO4 is primed, in part, by the PI3K/AKT effector axis of oncogenic RAS signalling. In addition, mutant RAS coordinately elevates proteasome subunit expression and proteolytic activity to eradicate nuclear FOXO4 proteins from RAS-mutant cancer cells. Importantly, dual inhibition of CK1α and the proteasome synergistically inhibited the growth of multiple RAS-mutant human cancer cell lines of diverse tissue origin by blockade of nuclear FOXO4 degradation and induction of caspase-dependent apoptosis. Our findings challenge the current paradigm that nuclear export regulates the proteolysis of FOXO3A/4 tumour suppressors in the context of cancer and illustrates how oncogenic RAS-mediated degradation of FOXOs, via post-translational mechanisms, blocks these important tumour suppressors.


Novel strain-level resolution of Crohn's disease mucosa-associated microbiota via an ex vivo combination of microbe culture and metagenomic sequencing.

  • J J Teh‎ et al.
  • The ISME journal‎
  • 2021‎

The mucosa-associated microbiota is widely recognized as a potential trigger for Crohn's disease pathophysiology but remains largely uncharacterised beyond its taxonomic composition. Unlike stool microbiota, the functional characterisation of these communities using current DNA/RNA sequencing approaches remains constrained by the relatively small microbial density on tissue, and the overwhelming amount of human DNA recovered during sample preparation. Here, we have used a novel ex vivo approach that combines microbe culture from anaerobically preserved tissue with metagenome sequencing (MC-MGS) to reveal patient-specific and strain-level differences among these communities in post-operative Crohn's disease patients. The 16 S rRNA gene amplicon profiles showed these cultures provide a representative and holistic representation of the mucosa-associated microbiota, and MC-MGS produced both high quality metagenome-assembled genomes of recovered novel bacterial lineages. The MC-MGS approach also produced a strain-level resolution of key Enterobacteriacea and their associated virulence factors and revealed that urease activity underpins a key and diverse metabolic guild in these communities, which was confirmed by culture-based studies with axenic cultures. Collectively, these findings using MC-MGS show that the Crohn's disease mucosa-associated microbiota possesses taxonomic and functional attributes that are highly individualistic, borne at least in part by novel bacterial lineages not readily isolated or characterised from stool samples using current sequencing approaches.


Waves of Change: Brain Sensitivity to Differential, not Absolute, Stimulus Intensity is Conserved Across Humans and Rats.

  • R Somervail‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2021‎

Living in rapidly changing environments has shaped the mammalian brain toward high sensitivity to abrupt and intense sensory events-often signaling threats or affordances requiring swift reactions. Unsurprisingly, such events elicit a widespread electrocortical response (the vertex potential, VP), likely related to the preparation of appropriate behavioral reactions. Although the VP magnitude is largely determined by stimulus intensity, the relative contribution of the differential and absolute components of intensity remains unknown. Here, we dissociated the effects of these two components. We systematically varied the size of abrupt intensity increases embedded within continuous stimulation at different absolute intensities, while recording brain activity in humans (with scalp electroencephalography) and rats (with epidural electrocorticography). We obtained three main results. 1) VP magnitude largely depends on differential, and not absolute, stimulus intensity. This result held true, 2) for both auditory and somatosensory stimuli, indicating that sensitivity to differential intensity is supramodal, and 3) in both humans and rats, suggesting that sensitivity to abrupt intensity differentials is phylogenetically well-conserved. Altogether, the current results show that these large electrocortical responses are most sensitive to the detection of sensory changes that more likely signal the sudden appearance of novel objects or events in the environment.


BiTE secretion from in situ-programmed myeloid cells results in tumor-retained pharmacology.

  • S Hao‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2022‎

Bispecific T-Cell Engagers (BiTEs) are effective at inducing remission in hematologic cancers, but their use in solid tumors has been challenging due to their extreme potency and on-target, off-tumor toxicities in healthy tissue. Their deployment against solid tumors is further complicated by insufficient drug penetration, a hostile tumor microenvironment, and immune escape. To address these challenges, we developed targeted nanocarriers that can deliver in vitro-transcribed mRNA encoding BiTEs to host myeloid cells - a cell type that is actively recruited into the tumor microenvironment. We demonstrate in an immunocompetent mouse model of ovarian cancer, that infusion of these nanoparticles directs BiTE expression to tumor sites, which reshapes the microenvironment from suppressive to permissive and triggers disease regression without systemic toxicity. In contrast, conventional injections of recombinant BiTE protein at doses required to achieve anti-tumor activity, induced systemic inflammatory responses and severe tissue damage in all treated animals. Implemented in the clinic, this in situ gene therapy could enable physicians - with a single therapeutic - to safely target tumor antigen that would otherwise not be druggable due to the risks of on-target toxicity and, at the same time, reset the tumor milieu to boost key mediators of antitumor immune responses.


A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma.

  • J Tang‎ et al.
  • Cell death & disease‎
  • 2014‎

Location-associated long noncoding RNA (lncRNA) was reported to interact with target protein via a cis-regulatory process especially for the Flank10kb class lncRNA. Based on this theory, we aimed to explore the regulatory mechanisms of Linc00974 and KRT19 (an lncRNA beyond the Flank10kb class with protein) when we first confirmed the aberrant expression in hepatocellular carcinoma in a previous study. Knockdown of Linc00974 resulted in an inhibition of cell proliferation and invasion with an activation of apoptosis and cell cycle arrest in vitro, which was also validated by a subcutaneous and tail vein/intraperitoneal injection xenotransplantation model in vivo. We further investigated the interaction pattern of Linc00974 and KRT19. MiR-642 was identified, by acting as the competing endogenous RNA in regulating Linc00974 and KRT19. Linc00974 was increased owing to an abnormal hypomethylation promoter, which induced the upregulation of KRT19 via ceRNA interaction, resulting in the activation of the Notch and TGF-β pathways as detected by cDNA microarray. We also discovered Linc00974F-1 stably expressed in the plasma. By the combined analysis of Linc00974F-1 with CYFRA21-1, we found that these joint indicators predicted growth and metastasis of tumor in HCC patients. In conclusion, the combination of Linc00974 and KRT19 may be novel indices for clinical diagnosis of tumor growth and metastasis in HCC, while Linc00974 may become a potential therapeutic target for the prevention of HCC progression.


Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine.

  • D Cai‎ et al.
  • Cell death & disease‎
  • 2016‎

Methamphetamine (METH) abuse has been a serious global public health problem for decades. Previous studies have shown that METH causes detrimental effects on the nervous and cardiovascular systems. METH-induced cardiovascular toxicity has been, in part, attributed to its destructive effect on vascular endothelial cells. However, the underlying mechanism of METH-caused endothelium disruption has not been investigated systematically. In this study, we identified a novel pathway involved in endothelial cell apoptosis induced by METH. We demonstrated that exposure to METH caused mitochondrial apoptosis in human umbilical vein endothelial cells and rat cardiac microvascular endothelial cells in vitro as well as in rat cardiac endothelial cells in vivo. We found that METH mediated endothelial cell apoptosis through Nupr1-Chop/P53-PUMA/Beclin1 signaling pathway. Specifically, METH exposure increased the expression of Nupr1, Chop, P53 and PUMA. Elevated p53 expression raised up PUMA expression, which initiated mitochondrial apoptosis by downregulating antiapoptotic Bcl-2, followed by upregulation of proapoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. Interestingly, increased Beclin1, upregulated by Chop, formed a ternary complex with Bcl-2, thereby decreasing the dissociative Bcl-2. As a result, the ratio of dissociative Bcl-2 to Bax was also significantly decreased, which led to translocation of cyto c and initiated more drastic apoptosis. These findings were supported by data showing METH-induced apoptosis was significantly inhibited by silencing Nupr1, Chop or P53, or by PUMA or Beclin1 knockdown. Based on the present data, a novel mechanistic model of METH-induced endothelial cell toxicity is proposed. Collectively, these results highlight that the Nupr1-Chop/P53-PUMA/Beclin1 pathway is essential for mitochondrion-related METH-induced endothelial cell apoptosis and may be a potential therapeutic target for METH-caused cardiovascular toxicity. Future studies using knockout animal models are warranted to substantiate the present findings.


Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence.

  • H Jin‎ et al.
  • Cell death & disease‎
  • 2016‎

Activation of quiescent hepatic stellate cells (HSCs) is the major event in hepatic fibrogenesis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Although inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSCs, a better understanding of the senescence of activated HSCs can provide a new therapeutic strategy for prevention and treatment of liver fibrosis. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. The current work was aimed to evaluate the effect of curcumin on senescence of activated HSCs and to elucidate the underlying mechanisms. In this study, curcumin promoted the expression of senescence marker Hmga1 in rat fibrotic liver. In addition, curcumin increased the number of senescence-associated β-galactosidase-positive HSCs in vitro. At the same time, curcumin induced HSC senescence by elevating the expression of senescence markers P16, P21 and Hmga1, concomitant with reduced abundance of HSC activation markers α-smooth muscle actin and α1(I)-procollagen in cultured HSCs. Moreover, curcumin affected the cell cycle and telomerase activity. We further demonstrated that P53 pharmacological inhibitor pifithrin-α (PFT-α) or transfection with P53 siRNA abrogated the curcumin-induced HSC senescence in vitro. Meanwhile, curcumin disruption of P53 leading to increased senescence of activated HSCs was further verified in vivo. Further studies indicated that curcumin promoted the expression of P53 through a PPARγ activation-dependent mechanism. Moreover, promoting PPARγ transactivating activity by a PPARγ agonist 15d-PGJ2 markedly enhanced curcumin induction of senescence of activated HSCs. However, the PPARγ antagonist PD68235 eliminated curcumin induction of HSC senescence. Taken together, our results provided a novel insight into the mechanisms underlying curcumin inhibition of HSC activation through inducing senescence.


Genetic variation in CYP3A43 explains racial difference in olanzapine clearance.

  • K L Bigos‎ et al.
  • Molecular psychiatry‎
  • 2011‎

The antipsychotic drug, olanzapine, one of the most widely used drugs in clinical medicine, has a high rate of discontinuation due to inefficacy and/or adverse effects. We identified a single nucleotide polymorphism in the drug metabolizing enzyme, cytochrome P450 3A43 (CYP3A43; rs472660), that highly significantly predicted olanzapine clearance in the Clinical Antipsychotic Trials of Intervention Effectiveness trial (P=5.9e(-7)). Moreover, at standard antipsychotic doses, 50% of individuals with the high clearance genotype (AA) have trough blood levels below the therapeutic range. Interestingly, a much higher proportion of African Americans carry the A allele compared with Caucasians (allele frequency 67 vs 14%). After accounting for CYP3A43 genotype, race is no longer a significant predictor of olanzapine clearance. Olanzapine clearance was associated with measures of clinical response. Patients with greater clearance had higher symptom ratings and were more likely to discontinue treatment due to an inadequate response. Our data identify a genetic mechanism for variation in olanzapine response and demonstrate that blood level monitoring of olanzapine treatment is advisable.


Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

  • Y Lei‎ et al.
  • PloS one‎
  • 2015‎

DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD) of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: