Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 206 papers

Phenylethanolamine N-methyltransferase downregulation is associated with malignant pheochromocytoma/paraganglioma.

  • Seung Eun Lee‎ et al.
  • Oncotarget‎
  • 2016‎

Malignant pheochromocytoma/paraganglioma (PCC/PGL) is defined by the presence of metastases at non-chromaffin sites, which makes it difficult to prospectively diagnose malignancy. Here, we performed array CGH (aCGH) and paired gene expression profiling of fresh, frozen PCC/PGL samples (n = 12), including three malignant tumors, to identify genes that distinguish benign from malignant tumors. Most PCC/PGL cases showed few copy number aberrations, regardless of malignancy status, but mRNA analysis revealed that 390 genes were differentially expressed in benign and malignant tumors. Expression of the enzyme, phenylethanolamine N-methyltransferase (PNMT), which catalyzes the methylation of norepinephrine to epinephrine, was significantly lower in malignant PCC/PGL as compared to benign samples. In 62 additional samples, we confirmed that PNMT mRNA and protein levels were decreased in malignant PCC/PGL using quantitative real-time polymerase chain reaction and immunohistochemistry. The present study demonstrates that PNMT downregulation correlates with malignancy in PCC/PGL and identifies PNMT as one of the most differentially expressed genes between malignant and benign tumors.


Utility of Serum Albumin for Predicting Incident Metabolic Syndrome according to Hyperuricemia.

  • You Bin Lee‎ et al.
  • Diabetes & metabolism journal‎
  • 2018‎

Serum albumin and uric acid have been positively linked to metabolic syndrome (MetS). However, the association of MetS incidence with the combination of uric acid and albumin levels has not been investigated. We explored the association of albumin and uric acid with the risk of incident MetS in populations divided according to the levels of these two parameters.


Prognostic significance of malnutrition for long-term mortality in community-acquired pneumonia: a propensity score matched analysis.

  • Hye Ju Yeo‎ et al.
  • The Korean journal of internal medicine‎
  • 2019‎

The impact of malnutrition on the outcome of hospitalized adults with community-acquired pneumonia (CAP) has not been fully investigated. This study evaluated the prevalence and prognostic significance of malnutrition in a Korean population with CAP.


Electrophysiological Evidence for Functional Astrocytic P2X3 Receptors in the Mouse Trigeminal Caudal Nucleus.

  • Jaekwang Lee‎ et al.
  • Experimental neurobiology‎
  • 2018‎

Recently, we reported that astrocytes in the trigeminal caudal nucleus (Vc) of the brain stem express a purinergic receptor P2X3, which is involved in the craniofacial pathologic pain. Although we observed protein expression of P2X3 receptors (P2X3 Rs) in the astrocyte of the Vc, it is still unclear that astrocyte has functional P2X3Rs in Vc. To address this issue, we recorded asrtocytic P2X3Rs by using whole cell voltage-clamp recording in the Vc of the GFAP-GFP mice, which was used as a guide to astrocytes with green fluorescence. While measuring voltage ramp-induced astrocytic membrane current, we found the amplitude of the current was increased when we applied P2-purinoreceptor agonist, α,β-meATP. This increase was blocked by co-application of A317491, P2X3R antagonist. These results demonstrate that astrocytes in the Vc express functional P2X3Rs, which might be critical in craniofacial pathologic pain.


Postcholecystectomy syndrome: symptom clusters after laparoscopic cholecystectomy.

  • Hongbeom Kim‎ et al.
  • Annals of surgical treatment and research‎
  • 2018‎

Postcholecystectomy syndrome (PCS) is characterized by abdominal symptoms following gallbladder removal. However, there is no consensus for the definition or treatment for PCS. The purpose of this study was to define PCS among various symptoms after laparoscopic cholecystectomy, and to identify risk factors affecting PCS.


Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain.

  • Juhwan Kim‎ et al.
  • Molecules and cells‎
  • 2018‎

Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knockdown of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.


Astilbe chinensis Modulates Platelet Function via Impaired MAPK and PLCγ2 Expression.

  • Bo-Ra Jeon‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Platelets play major role in maintaining hemostasis while hyperactivation of platelets may lead to arterial thrombosis. Natural products and ethnomedicine have been shown to reduce the risk of cardiovascular diseases (CVDs). Astilbe chinensis is a perennial herb found in China, Korea, Russia, and Japan, which is also known for its medicinal effects, and has been used in Korean traditional medicine to treat inflammation, cancer, chronic bronchitis, and headache. We hypothesized that given herbal plant exhibits pharmacological activities against CVDs, and we specifically explored their effects on platelet function.


Oligomer Formation Propensities of Dimeric Bundle Peptides Correlate with Cell Penetration Abilities.

  • Soonsil Hyun‎ et al.
  • ACS central science‎
  • 2018‎

LK-3, an amphipathic dimeric peptide linked by two disulfide bonds, and related isomeric bundles were synthesized, and their cell penetrating abilities were investigated. The measurements using size exclusion chromatography and dynamic light scattering show that LK-3 and its isomers form cell penetrating oligomers. Calculations, performed for various types of peptide isomers, elucidate a strong correlation between the amphipathic character of dimers and cell penetration ability. The results suggest that the amphipathicities of LK-3 and related bundle dimers are responsible for their oligomerization propensities which in turn determine their cell penetrating abilities. The observations made in this study provide detailed information about the mechanism of cell uptake of LK-3 and suggest a plausible insight of the early stage of nanoparticle formation of the cell penetrating amphipathic peptides.


Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease.

  • Minhee Jang‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. HD is caused by an expansion of CAG repeats in the huntingtin (HTT) gene in various areas of the brain including striatum. There are few suitable animal models to study the pathogenesis of HD and validate therapeutic strategies. Recombinant adeno-associated viral (AAV) vectors successfully transfer foreign genes to the brain of adult mammalians. In this article, we report a novel mouse model of HD generated by bilateral intrastriatal injection of AAV vector serotype DJ (AAV-DJ) containing N171-82Q mutant HTT (82Q) and N171-18Q wild type HTT (18Q; sham). The AAV-DJ-82Q model displayed motor dysfunctions in pole and rotarod tests beginning 4 weeks after viral infection in juvenile mice (8 weeks after birth). They showed behaviors reflecting neurodegeneration. They also showed increased apoptosis, robust glial activation and upregulated representative inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), mediators (cyclooxygenase-2 and inducible nitric oxide synthase) and signaling pathways (nuclear factor kappa B and signal transducer and activator of transcription 3 (STAT3)) in the striatum at 10 weeks after viral infection (14 weeks after birth) via successful transfection of mutant HTT into neurons, microglia, and astrocytes in the striatum. However, little evidence of any of these events was found in mice infected with the AAV-DJ-18Q expressing construct. Intrastriatal injection of AAV-DJ-82Q might be useful as a novel in vivo model to investigate the biology of truncated N-terminal fragment (N171) in the striatum and to explore the efficacy of therapeutic strategies for HD.


Distribution and Function of the Bestrophin-1 (Best1) Channel in the Brain.

  • Soo-Jin Oh‎ et al.
  • Experimental neurobiology‎
  • 2017‎

Bestrophin-1 (Best1) is a calcium-activated anion channel identified from retinal pigment epithelium where human mutations are associated with Best's macular degeneration. Best1 is known to be expressed in a variety of tissues including the brain, and is thought to be involved in many physiological processes. This review focuses on the current state of knowledge on aspects of expression and function of Best1 in the brain. Best1 protein is observed in cortical and hippocampal astrocytes, in cerebellar Bergmann glia and lamellar astrocytes, in thalamic reticular neurons, in meninges and in the epithelial cells of the choroid plexus. The most prominent feature of Best1 is its significant permeability to glutamate and GABA in addition to chloride ions because glutamate and GABA are important transmitters in the brain. Under physiological conditions, both Best1-mediated glutamate release and tonic GABA release from astrocytes modulate neuronal excitability, synaptic transmission and synaptic plasticity. Under pathological conditions such as neuroinflammation and neurodegeneration, reactive astrocytes phenotypically switch from GABA-negative to GABA-producing and redistribute Best1 from the perisynaptic microdomains to the soma and processes to tonically release GABA via Best1. This implicates that tonic GABA release from reactive astrocyte via redistributed Best1 is a common phenomenon that occur in various pathological conditions with astrogliosis such as traumatic brain injury, neuroinflammation, neurodegeneration, and hypoxic and ischemic insults. These properties of Best1, including the permeation and release of glutamate and GABA and its redistribution in reactive astrocytes, promise us exciting discoveries of novel brain functions to be uncovered in the future.


Imiquimod enhances excitability of dorsal root ganglion neurons by inhibiting background (K(2P)) and voltage-gated (K(v)1.1 and K(v)1.2) potassium channels.

  • Jaekwang Lee‎ et al.
  • Molecular pain‎
  • 2012‎

Imiquimod (IQ) is known as an agonist of Toll-like receptor 7 (TLR7) and is widely used to treat various infectious skin diseases. However, it causes severe itching sensation as its side effect. The precise mechanism of how IQ causes itching sensation is unknown. A recent report suggested a molecular target of IQ as TLR7 expressed in dorsal root ganglion (DRG) neurons. However, we recently proposed a TLR7-independent mechanism, in which the activation of TLR7 is not required for the action of IQ in DRG neurons. To resolve this controversy regarding the involvement of TLR7 and to address the exact molecular identity of itching sensation by IQ, we investigated the possible molecular target of IQ in DRG neurons.


Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network.

  • So Hyun Kim‎ et al.
  • Nature communications‎
  • 2017‎

In native tissues, cellular and acellular components are anisotropically organized and often aligned in specific directions, providing structural and mechanical properties for actuating biological functions. Thus, engineering alignment not only allows for emulation of native tissue structures but might also enable implementation of specific functionalities. However, achieving desired alignment is challenging, especially in three-dimensional constructs. By exploiting the elastomeric property of polydimethylsiloxane and fibrillogenesis kinetics of collagen, here we introduce a simple yet effective method to assemble and align fibrous structures in a multi-modular three-dimensional conglomerate. Applying this method, we have reconstructed the CA3-CA1 hippocampal neural circuit three-dimensionally in a monolithic gel, in which CA3 neurons extend parallel axons to and synapse with CA1 neurons. Furthermore, we show that alignment of the fibrous scaffold facilitates the establishment of functional connectivity. This method can be applied for reconstructing other neural circuits or tissue units where anisotropic organization in a multi-modular structure is desired.


New role of human ribosomal protein S3: Regulation of cell cycle via phosphorylation by cyclin-dependent kinase 2.

  • Se Hee Han‎ et al.
  • Oncology letters‎
  • 2017‎

Human ribosomal protein S3 (hRpS3) is a component of the 40S ribosomal subunit that associated in protein synthesis. hRpS3 has additional ribosomal functions such as DNA repair, transcription, metastasis, and apoptosis via interaction with numerous signaling molecules and has different modifications. Cyclin-dependent kinases (CDKs) are heterodimeric serine/threonine protein kinases that regulate cell cycle progression. Among its members, the Cdk1-cyclin B complex is known to control cell progression in the G2/M phase, while Cdk2-cyclin E/A complexes function in G1/S and S/G2 transition. In our previous study, we observed interaction between hRpS3 and Cdk1. The present study investigated the interaction between hRpS3 and Cdk2. Cdk2 phosphorylated hRps3 at amino acid residues S6 and T221 during the S-phase. Furthermore, hRpS3 knockdown delayed cell cycle progression by modulating the expression of cell cycle-related proteins, including cyclin B1 and cyclin E1. These findings suggest that hRpS3 is involved in Cdk2-mediated cell cycle regulation.


A direct protein kinase B-targeted anti-inflammatory activity of cordycepin from artificially cultured fruit body of Cordyceps militaris.

  • Ju Young Yoon‎ et al.
  • Pharmacognosy magazine‎
  • 2015‎

Cordyceps militaris is one of well-known medicinal mushrooms with anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity activities.


Curcumin Attenuates Acrolein-induced COX-2 Expression and Prostaglandin Production in Human Umbilical Vein Endothelial Cells.

  • Seung Eun Lee‎ et al.
  • Journal of lipid and atherosclerosis‎
  • 2020‎

Inflammation is crucial to limiting vascular disease. Previously we reported that acrolein, a known toxin in tobacco smoke, might play an important role in the progression of atherosclerosis via an inflammatory response involving cyclooxygenase-2 (COX-2) and prostaglandin production in human umbilical vein endothelial cells (HUVECs). Curcumin has been known to improve vascular function and have anti-inflammatory properties. In this study, we investigated whether curcumin prevents the induction of inflammatory response caused by acrolein.


High polymerase ε expression associated with increased CD8+T cells improves survival in patients with non-small cell lung cancer.

  • Kyueng-Whan Min‎ et al.
  • PloS one‎
  • 2020‎

DNA replicase polymerase ε (POLE) is critical in proofreading and correcting errors of DNA replication. Low POLE expression plays a pivotal role in accumulation of mutations and onset of cancer, contributing to development and growth of tumor cells. The aim of this study is to reveal the survival, alternative genes and antitumoral immune activities in non-small cell lung cancer (NSCLC) patients with low POLE expression and provide treatment strategies that can increase their survival rates. This study investigated the clinicopathologic parameters, various tumor-infiltrating lymphocytes (TILs), endogenous retrovirus, molecular interactions and in vitro drug screen according to POLE mutation/expression in 168 and 1,019 NSCLC patients from the Konkuk University Medical Center (KUMC) and the Cancer Genome Atlas, respectively. We identified mutations of 75 genes in the sequencing panels, with POLE frame shift p.V1446fs being the most frequent (56.8%) in KUMC based on 170 targeted sequencing panels. Mutant and high expression of POLE correlated with favorable prognosis with increased TILs and tumor mutation burden, compared with wild type and low expression of POLE. We found specific molecular interactions associated with cell cycle and antigen presentation. An in vitro drug screen identified dasatinib that inhibited growth of the NSCLC cell line with low POLE expression. POLE could contribute to the future development of anticancer drugs for patients with NSCLC.


Mesenchymal stem cells prevent the progression of diabetic nephropathy by improving mitochondrial function in tubular epithelial cells.

  • Seung Eun Lee‎ et al.
  • Experimental & molecular medicine‎
  • 2019‎

The administration of mesenchymal stem cells (MSCs) was shown to attenuate overt as well as early diabetic nephropathy in rodents, but the underlying mechanism of this beneficial effect is largely unknown. Inflammation and mitochondrial dysfunction are major pathogenic factors in diabetic nephropathy. In this study, we found that the repeated administration of MSCs prevents albuminuria and injury to tubular epithelial cells (TECs), an important element in the progression of diabetic nephropathy, by improving mitochondrial function. The expression of M1 macrophage markers was significantly increased in diabetic kidneys compared with that in control kidneys. Interestingly, the expression of arginase-1 (Arg1), an important M2 macrophage marker, was reduced in diabetic kidneys and increased by MSC treatment. In cultured TECs, conditioned media from lipopolysaccharide-activated macrophages reduced peroxisomal proliferator-activated receptor gamma coactivator 1α (Pgc1a) expression and impaired mitochondrial function. The coculture of macrophages with MSCs increased and decreased the expression of Arg1 and M1 markers, respectively. Treatment with conditioned media from cocultured macrophages prevented activated macrophage-induced mitochondrial dysfunction in TECs. In the absence of MSC coculture, Arg1 overexpression in macrophages reversed Pgc1a suppression in TECs. These observations suggest that MSCs prevent the progression of diabetic nephropathy by reversing mitochondrial dysfunction in TECs via the induction of Arg1 in macrophages.


Korean Surgical Practice Guideline for Pancreatic Cancer 2022: A summary of evidence-based surgical approaches.

  • Seung Eun Lee‎ et al.
  • Annals of hepato-biliary-pancreatic surgery‎
  • 2022‎

Pancreatic cancer is the eighth most common cancer and the fifth most common cause of cancer-related deaths in Korea. Despite the increasing incidence and high mortality rate of pancreatic cancer, there are no appropriate surgical practice guidelines for the current domestic medical situation. To enable standardization of management and facilitate improvements in surgical outcome, a total of 10 pancreatic surgical experts who are members of Korean Association of Hepato-Biliary-Pancreatic Surgery have developed new recommendations that integrate the most up-to-date, evidence-based research findings and expert opinions. This is an English version of the Korean Surgical Practice Guideline for Pancreatic Cancer 2022. This guideline includes 13 surgical questions and 15 statements. Due to the lack of high-level evidence, strong recommendation is almost impossible. However, we believe that this guideline will help surgeons understand the current status of evidence and suggest what to investigate further to establish more solid recommendations in the future.


Dopamine-induced astrocytic Ca2+ signaling in mPFC is mediated by MAO-B in young mice, but by dopamine receptors in adult mice.

  • Sunpil Kim‎ et al.
  • Molecular brain‎
  • 2022‎

Dopamine (DA) plays a vital role in brain physiology and pathology such as learning and memory, motor control, neurological diseases, and psychiatric diseases. In neurons, it has been well established that DA increases or decreases intracellular cyclic AMP (cAMP) through D1-like or D2-like dopamine receptors, respectively. In contrast, it has been elusive how astrocytes respond to DA via Ca2+ signaling and regulate synaptic transmission and reward systems. Previous studies suggest various molecular targets such as MAO-B, D1R, or D1R-D2R heteromer to modulate astrocytic Ca2+ signaling. However, which molecular target is utilized under what physiological condition remains unclear. Here, we show that DA-induced astrocytic Ca2+ signaling pathway switches during development: MAO-B is the major player at a young age (5-6 weeks), whereas DA receptors (DARs) are responsible for the adult period (8-12 weeks). DA-mediated Ca2+ response in the adult period was decreased by either D1R or D2R blockers, which are primarily known for cyclic AMP signaling (Gs and Gi pathway, respectively), suggesting that this Ca2+ response might be mediated through Gq pathway by D1R-D2R heterodimer. Moreover, DAR-mediated Ca2+ response was not blocked by TTX, implying that this response is not a secondary response caused by neuronal activation. Our study proposes an age-specific molecular target of DA-induced astrocytic Ca2+ signaling: MAO-B in young mice and DAR in adult mice.


DMSO-tolerant ornithine decarboxylase (ODC) tandem assay optimised for high-throughput screening.

  • Mingu Gordon Park‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2023‎

Ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, has emerged as a therapeutic target for cancer and Alzheimer's disease (AD). To inhibit ODC, α-difluoromethylornithine (DFMO), an irreversible ODC inhibitor, has been widely used. However, due to its poor pharmacokinetics, the need for discovery of better ODC inhibitors is inevitable. For high-throughput screening (HTS) of ODC inhibitors, an ODC enzyme assay using supramolecular tandem assay has been introduced. Nevertheless, there has been no study utilising the ODC tandem assay for HTS, possibly due to its intolerability to dimethyl sulfoxide (DMSO), a common amphipathic solvent used for drug libraries. Here we report a DMSO-tolerant ODC tandem assay in which DMSO-dependent fluorescence quenching becomes negligible by separating enzyme reaction and putrescine detection. Furthermore, we optimised human cell-line-based mass production of ODC for HTS. Our newly developed assay can be a crucial first step in discovering more effective ODC modulators than DFMO.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: