Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore.

  • E Jacotot‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Viral protein R (Vpr) encoded by HIV-1 is a facultative inducer of apoptosis. When added to intact cells or purified mitochondria, micromolar and submicromolar doses of synthetic Vpr cause a rapid dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)), as well as the mitochondrial release of apoptogenic proteins such as cytochrome c or apoptosis inducing factor. The same structural motifs relevant for cell killing are responsible for the mitochondriotoxic effects of Vpr. Both mitochondrial and cytotoxic Vpr effects are prevented by Bcl-2, an inhibitor of the permeability transition pore complex (PTPC). Coincubation of purified organelles revealed that nuclear apoptosis is only induced by Vpr when mitochondria are present yet can be abolished by PTPC inhibitors. Vpr favors the permeabilization of artificial membranes containing the purified PTPC or defined PTPC components such as the adenine nucleotide translocator (ANT) combined with Bax. Again, this effect is prevented by addition of recombinant Bcl-2. The Vpr COOH terminus binds purified ANT, as well as a molecular complex containing ANT and the voltage-dependent anion channel (VDAC), another PTPC component. Yeast strains lacking ANT or VDAC are less susceptible to Vpr-induced killing than control cells yet recover Vpr sensitivity when retransfected with yeast ANT or human VDAC. Hence, Vpr induces apoptosis via a direct effect on the mitochondrial PTPC.


Caspase-generated fragment of the Met receptor favors apoptosis via the intrinsic pathway independently of its tyrosine kinase activity.

  • J Lefebvre‎ et al.
  • Cell death & disease‎
  • 2013‎

The receptor tyrosine kinase Met and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas the deregulation of Met signaling is associated with tumorigenesis. While ligand-activated Met promotes survival, caspase-dependent generation of the p40 Met fragment leads to apoptosis induction - hallmark of the dependence receptor. Although the survival signaling pathways induced by Met are well described, the pro-apoptotic signaling pathways are unknown. We show that, although p40 Met contains the entire kinase domain, it accelerates apoptosis independently of kinase activity. In cell cultures undergoing apoptosis, the fragment shows a mitochondrial localization, required for p40 Met-induced cell death. Fulminant hepatic failure induced in mice leads to the generation of p40 Met localized also in the mitochondria, demonstrating caspase cleavage of Met in vivo. According to its localization, the fragment induces mitochondrial permeabilization, which is inhibited by Bak silencing and Bcl-xL overexpression. Moreover, Met silencing delays mitochondrial permeabilization induced by an apoptotic treatment. Thus, the Met-dependence receptor in addition to its well-known role in survival signaling mediated by its kinase activity, also participates in the intrinsic apoptosis pathway through the generation of p40 Met - a caspase-dependent fragment of Met implicated in the mitochondrial permeabilization process.


Systems biology of cisplatin resistance: past, present and future.

  • L Galluzzi‎ et al.
  • Cell death & disease‎
  • 2014‎

The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant problem.


A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death.

  • Z Wang‎ et al.
  • Cell death & disease‎
  • 2016‎

Although cardiac cytosolic cyclic 3',5'-adenosine monophosphate (cAMP) regulates multiple processes, such as beating, contractility, metabolism and apoptosis, little is known yet on the role of this second messenger within cardiac mitochondria. Using cellular and subcellular approaches, we demonstrate here the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1), and show a protective role for sACt against cell death, apoptosis as well as necrosis in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3(-)) and Ca(2+), sACt produces cAMP, which in turn stimulates oxygen consumption, increases the mitochondrial membrane potential (ΔΨm) and ATP production. cAMP is rate limiting for matrix Ca(2+) entry via Epac1 and the mitochondrial calcium uniporter and, as a consequence, prevents mitochondrial permeability transition (MPT). The mitochondrial cAMP effects involve neither protein kinase A, Epac2 nor the mitochondrial Na(+)/Ca(2+) exchanger. In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3(-) rescued the sensitization of mitochondria to Ca(2+)-induced MPT. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism and cell death in the heart, which is independent of cytosolic cAMP signaling. Our results might have implications for therapeutic prevention of cell death in cardiac pathologies.


HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase.

  • H Lecoeur‎ et al.
  • Cell death & disease‎
  • 2012‎

The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria. Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (ΔΨ(m)) as well as cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-channel inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-induced MMP. We finally observed that Tat inhibits cytochrome c oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor.


Activation of surrogate death receptor signaling triggers peroxynitrite-dependent execution of cisplatin-resistant cancer cells.

  • S Seah‎ et al.
  • Cell death & disease‎
  • 2015‎

Platinum-based drugs remain as the cornerstone of cancer chemotherapy; however, development of multidrug resistance presents a therapeutic challenge. This study aims at understanding the molecular mechanisms underlying resistance to cisplatin and unraveling surrogate signaling networks that could revert sensitivity to apoptosis stimuli. We made use of three different sets of cell lines, A549 and H2030 non-small-cell lung cancer (NSCLC) and A2780 ovarian cancer cells and their cisplatin-resistant variants. Here we report that cisplatin-resistant cell lines displayed a multidrug-resistant phenotype. Changes in mitochondrial metabolism and defective mitochondrial signaling were unraveled in the resistant cells. More interestingly, a marked increase in sensitivity of the resistant cells to death receptor-induced apoptosis, in particular TRAIL (TNF-related apoptosis-inducing ligand)-mediated execution, was observed. Although this was not associated with an increase in gene transcription, a significant increase in the localization of TRAIL death receptor, DR4, to the lipid raft subdomains of plasma membrane was detected in the resistant variants. Furthermore, exposure of cisplatin-resistant cells to TRAIL resulted in upregulation of inducible nitric oxide synthase (iNOS) and increase in nitric oxide (NO) production that triggered the generation of peroxynitrite (ONOO(-)). Scavenging ONOO(-) rescued cells from TRAIL-induced apoptosis, thereby suggesting a critical role of ONOO(-) in TRAIL-induced execution of cisplatin-resistant cells. Notably, preincubation of cells with TRAIL restored sensitivity of resistant cells to cisplatin. These data provide compelling evidence for employing strategies to trigger death receptor signaling as a second-line treatment for cisplatin-resistant cancers.


Mitochondrial release of caspase-2 and -9 during the apoptotic process.

  • S A Susin‎ et al.
  • The Journal of experimental medicine‎
  • 1999‎

The barrier function of mitochondrial membranes is perturbed early during the apoptotic process. Here we show that the mitochondria contain a caspase-like enzymatic activity cleaving the caspase substrate Z-VAD.afc, in addition to three biological activities previously suggested to participate in the apoptotic process: (a) cytochrome c; (b) an apoptosis-inducing factor (AIF) which causes isolated nuclei to undergo apoptosis in vitro; and (c) a DNAse activity. All of these factors, which are biochemically distinct, are released upon opening of the permeability transition (PT) pore in a coordinate, Bcl-2-inhibitable fashion. Caspase inhibitors fully neutralize the Z-VAD.afc-cleaving activity, have a limited effect on the AIF activity, and have no effect at all on the DNase activities. Purification of proteins reacting with the biotinylated caspase substrate Z-VAD, immunodetection, and immunodepletion experiments reveal the presence of procaspase-2 and -9 in mitochondria. Upon induction of PT pore opening, these procaspases are released from purified mitochondria and become activated. Similarly, upon induction of apoptosis, both procaspases redistribute from the mitochondrion to the cytosol and are processed to generate enzymatically active caspases. This redistribution is inhibited by Bcl-2. Recombinant caspase-2 and -9 suffice to provoke full-blown apoptosis upon microinjection into cells. Altogether, these data suggest that caspase-2 and -9 zymogens are essentially localized in mitochondria and that the disruption of the outer mitochondrial membrane occurring early during apoptosis may be critical for their subcellular redistribution and activation.


The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins.

  • I Marzo‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Early in programmed cell death (apoptosis), mitochondrial membrane permeability increases. This is at least in part due to opening of the permeability transition (PT) pore, a multiprotein complex built up at the contact site between the inner and the outer mitochondrial membranes. The PT pore has been previously implicated in clinically relevant massive cell death induced by toxins, anoxia, reactive oxygen species, and calcium overload. Here we show that PT pore complexes reconstituted in liposomes exhibit a functional behavior comparable with that of the natural PT pore present in intact mitochondria. The PT pore complex is regulated by thiol-reactive agents, calcium, cyclophilin D ligands (cyclosporin A and a nonimmunosuppressive cyclosporin A derivative), ligands of the adenine nucleotide translocator, apoptosis-related endoproteases (caspases), and Bcl-2-like proteins. Although calcium, prooxidants, and several recombinant caspases (caspases 1, 2, 3, 4, and 6) enhance the permeability of PT pore-containing liposomes, recombinant Bcl-2 or Bcl-XL augment the resistance of the reconstituted PT pore complex to pore opening. Mutated Bcl-2 proteins that have lost their cytoprotective potential also lose their PT modulatory capacity. In conclusion, the PT pore complex may constitute a crossroad of apoptosis regulation by caspases and members of the Bcl-2 family.


IGL-1 solution reduces endoplasmic reticulum stress and apoptosis in rat liver transplantation.

  • I B Mosbah‎ et al.
  • Cell death & disease‎
  • 2012‎

Injury due to cold ischemia reperfusion (I/R) is a major cause of primary graft non-function following liver transplantation. We postulated that I/R-induced cellular damage during liver transplantation might affect the secretory pathway, particularly at the endoplasmic reticulum (ER). We examined the involvement of ER stress in organ preservation, and compared cold storage in University of Wisconsin (UW) solution and in Institute Georges Lopez-1 (IGL-1) solution. In one group of rats, livers were preserved in UW solution for 8 h at 4 °C, and then orthotopic liver transplantation was performed according to Kamada's cuff technique. In another group, livers were preserved in IGL-1 solution. The effect of each preservation solution on the induction of ER stress, hepatic injury, mitochondrial damage and cell death was evaluated. As expected, we found increased ER stress after liver transplantation. IGL-1 solution significantly attenuated ER damage by reducing the activation of three pathways of unfolded protein response and their effector molecules caspase-12, C/EBP homologous protein-10, X-box-binding protein 1, tumor necrosis factor-associated factor 2 and eukaryotic translation initiation factor 2. This attenuation of ER stress was associated with a reduction in hepatic injury and cell death. Our results show that IGL-1 solution may be a useful means to circumvent excessive ER stress reactions associated with liver transplantation, and may optimize graft quality.


Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003.

  • N S Zhong‎ et al.
  • Lancet (London, England)‎
  • 2003‎

An epidemic of severe acute respiratory syndrome (SARS) has been associated with an outbreak of atypical pneumonia originating in Guangdong Province, People's Republic of China. We aimed to identify the causative agent in the Guangdong outbreak and describe the emergence and spread of the disease within the province.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: