Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Addition of hydrochlorothiazide to angiotensin receptor blocker therapy can achieve a lower sodium balance with no acceleration of intrarenal renin angiotensin system in patients with chronic kidney disease.

  • Daisuke Fuwa‎ et al.
  • Journal of the renin-angiotensin-aldosterone system : JRAAS‎
  • 2016‎

Angiotensin receptor blockers (ARBs) produce a lower sodium (Na) balance, and the natriuretic effect is enhanced under Na deprivation, despite falls in blood pressure (BP) and glomerular filtration rate (GFR).


Tactile Estimation of Molded Plastic Plates Based on the Estimated Impulse Responses of Mechanoreceptive Units.

  • Lisako Nobuyama‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2018‎

This study proposes a tactile estimation method of molded plastic plates based on human tactile perception characteristics. Plastic plates are often used in consumer products. The tactile evaluation plays an important role in product development. However, physical quantities not taking into account human tactile perception have been employed in previous tactile estimation procedures. Hence, in this study, we adopted the vibrational thresholds of the mechanoreceptive units-FA I, FA II, SA I and SA II-for stimuli detection and developed a tactile estimation method for plastic plates that clarified the mechanoreceptive units related to tactile sensation. The developed tactile sensor consists of a base and a silicone rubber pad that contains strain gauges in it. We detected vibration during touch by the sensor and calculated the estimation of the firing values of the cutaneous mechanoreceptors, which are the essential data obtained by humans during tactile perception, in comparison to the amplitude spectrum of the vibration with the threshold amplitude of each mechanoreceptive unit. Simultaneously, we calculated the relationship between the normal and tangential forces recorded while the sensor ran over the samples. As a result of stepwise linear regression analysis using these values as explanatory variables, the evaluation scores for Soft were successfully estimated using the firing value of FA II and the relationship between normal/tangential forces, and the evaluation scores for Rough were estimated using the SA I firing value.


[18F]fluorodeoxyglucose-positron emission tomography study of genetically confirmed patients with Dravet syndrome.

  • Kazuhiro Haginoya‎ et al.
  • Epilepsy research‎
  • 2018‎

To understand cerebral brain dysfunction in patients with Dravet syndrome (DS), we conducted a [18F]fluorodeoxyglucose-positron emission tomography (FDG-PET) study in patients with DS whose SCN1A gene variant was confirmed.


RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis.

  • Ryo Sato‎ et al.
  • BioMed research international‎
  • 2017‎

Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non-small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients.


Recombinant production of active microbial transglutaminase in E. coli by using self-cleavable zymogen with mutated propeptide.

  • Ryo Sato‎ et al.
  • Protein expression and purification‎
  • 2020‎

Microbial transglutaminase from Streptomyces mobaraensis (MTG) has been widely used in food industry and also in research and medical applications, since it can site-specifically modify proteins by the cross-linking reaction of glutamine residue and the primary amino group. The recombinant expression system of MTG in E. coli provides better accessibility for the researchers and thus can promote further utilization of MTG. Herein, we report production of active and soluble MTG in E. coli by using a chimeric protein of tobacco etch virus (TEV) protease and MTG zymogen. A chimera of TEV protease and MTG zymogen with native propeptide resulted in active MTG contaminated with cleaved propeptide due to the strong interaction between the propeptide and catalytic domain of MTG. Introduction of mutations of K9R and Y11A to the propeptide facilitated dissociation of the cleaved propeptide from the catalytic domain of MTG and active MTG without any contamination of the propeptide was obtained. The specific activity of the active MTG was 22.7 ± 2.6 U/mg. The successful expression and purification of active MTG by using the chimera protein of TEV protease and MTG zymogen with mutations in the propeptide can advance the use of MTG and the researches using MTG mediated cross-linking reactions.


Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves.

  • Yuta Kurashina‎ et al.
  • Communications biology‎
  • 2019‎

Cell detachment is essential in culturing adherent cells. Trypsinization is the most popular detachment technique, even though it reduces viability due to the damage to the membrane and extracellular matrix. Avoiding such damage would improve cell culture efficiency. Here we propose an enzyme-free cell detachment method that employs the acoustic pressure, sloshing in serum-free medium from intermittent traveling wave. This method detaches 96.2% of the cells, and increases its transfer yield to 130% of conventional methods for 48 h, compared to the number of cells detached by trypsinization. We show the elimination of trypsinization reduces cell damage, improving the survival of the detached cells. Acoustic pressure applied to the cells and media sloshing from the intermittent traveling wave were identified as the most important factors leading to cell detachment. This proposed method will improve biopharmaceutical production by expediting the amplification of tissue-cultured cells through a more efficient transfer process.


Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice.

  • Akiyoshi Kasuga‎ et al.
  • Cancer science‎
  • 2021‎

Biliary tract cancer (BTC) arises from biliary epithelial cells (BECs) and includes intrahepatic cholangiocarcinoma (IHCC), gallbladder cancer (GC), and extrahepatic cholangiocarcinoma (EHCC). Although frequent KRAS mutations and epigenetic changes at the INK4A/ARF locus have been identified, the molecular pathogenesis of BTC is unclear and the development of corresponding anticancer agents remains inadequate. We isolated epithelial cell adhesion molecule (EpCAM)-positive BECs from the mouse intrahepatic bile duct, gallbladder, and extrahepatic bile duct, and established organoids derived from these cells. Introduction of activated KRAS and homozygous deletion of Ink4a/Arf in the cells of each organoid type conferred the ability to form lethal metastatic adenocarcinoma with differentiated components and a pronounced desmoplastic reaction on cell transplantation into syngeneic mice, indicating that the manipulated cells correspond to BTC-initiating cells. The syngeneic mouse models recapitulate the pathological features of human IHCC, GC, and EHCC, and they should therefore prove useful for the investigation of BTC carcinogenesis and the development of new therapeutic strategies. Tumor cells isolated from primary tumors formed organoids in three-dimensional culture, and serial syngeneic transplantation of these cells revealed that their cancer stem cell properties were supported by organoid culture, but not by adherent culture. Adherent culture thus attenuated tumorigenic activity as well as the expression of both epithelial and stem cell markers, whereas the expression of epithelial-mesenchymal transition (EMT)-related transcription factor genes and mesenchymal cell markers was induced. Our data show that organoid culture is important for maintenance of epithelial cell characteristics, stemness, and tumorigenic activity of BTC-initiating cells.


BCG vaccine may generate cross-reactive T cells against SARS-CoV-2: In silico analyses and a hypothesis.

  • Yusuke Tomita‎ et al.
  • Vaccine‎
  • 2020‎

The world is facing the rising emergency of SARS-CoV-2. The outbreak of COVID-19 has caused a global public health and economic crisis.Recent epidemiological studies have shown that a possible association of BCG vaccination program with decreased COVID-19-related risks, suggesting that BCG may provide protection against COVID-19. Non-specific protection against viral infections is considered as a main mechanism of BCG and clinical trials to determine whether BCG vaccine can protect healthcare workers from the COVID-19 are currently underway. We hypothesized that BCG may carry similar T cell epitopes with SARS-CoV-2 and evaluated the hypothesis by utilizing publicly available database and computer algorithms predicting human leukocyte antigen (HLA) class I-binding peptides. We foundthatBCG contains similar 9-amino acid sequences with SARS-CoV-2. These closely-related peptides had moderate to high binding affinity for multiple common HLA class I molecules, suggesting that cross-reactive T cells against SARS-CoV-2 could be generated by BCG vaccination.


TGFβ Signaling Activated by Cancer-Associated Fibroblasts Determines the Histological Signature of Lung Adenocarcinoma.

  • Ryo Sato‎ et al.
  • Cancer research‎
  • 2021‎

Invasive lung adenocarcinoma (LADC) can be classified histologically as lepidic, acinar, papillary, micropapillary, or solid. Most LADC tumors manifest several of these histological subtypes, with heterogeneity being related to therapeutic resistance. We report here that in immunodeficient mice, human LADC cells form tumors with distinct histological features, MUC5AC-expressing solid-type or cytokeratin 7 (CK7)-expressing acinar-type tumors, depending on the site of development, and that a solid-to-acinar transition (SAT) could be induced by the tumor microenvironment. The TGFβ-Smad signaling pathway was activated in both tumor and stromal cells of acinar-type tumors. Immortalized cancer-associated fibroblasts (CAF) derived from acinar-type tumors induced SAT in 3D cocultures with LADC cells. Exogenous TGFβ1 or overexpression of an active form of TGFβ1 increased CK7 expression and reduced MUC5AC expression in LADC cells, and knockdown of Tgfb1 mRNA in CAFs attenuated SAT induction. RNA-sequencing analysis suggested that angiogenesis and neutrophil recruitment are associated with SAT in vivo. Our data indicate that CAF-mediated paracrine TGFβ signaling induces remodeling of tumor tissue and determines the histological pattern of LADC, thereby contributing to tumor heterogeneity. SIGNIFICANCE: CAFs secrete TGFβ to induce a solid-to-acinar transition in lung cancer cells, demonstrating how the tumor microenvironment influences histological patterns and tumor heterogeneity in lung adenocarcinoma.


Well-free agglomeration and on-demand three-dimensional cell cluster formation using guided surface acoustic waves through a couplant layer.

  • Jiyang Mei‎ et al.
  • Biomedical microdevices‎
  • 2022‎

Three-dimensional cell agglomerates are broadly useful in tissue engineering and drug testing. We report a well-free method to form large (1.4-mm) multicellular clusters using 100-MHz surface acoustic waves (SAW) without direct contact with the media or cells. A fluid couplant is used to transform the SAW into acoustic streaming in the cell-laden media held in a petri dish. The couplant transmits longitudinal sound waves, forming a Lamb wave in the petri dish that, in turn, produces longitudinal sound in the media. Due to recirculation, human embryonic kidney (HEK293) cells in the dish are carried to the center of the coupling location, forming a cluster in less than 10 min. A few minutes later, these clusters may then be translated and merged to form large agglomerations, and even repeatedly folded to produce a roughly spherical shape of over 1.4 mm in diameter for incubation-without damaging the existing intercellular bonds. Calcium ion signaling through these clusters and confocal images of multiprotein junctional complexes suggest a continuous tissue construct: intercellular communication. They may be formed at will, and the method is feasibly useful for formation of numerous agglomerates in a single petri dish.


CdsA is involved in biosynthesis of glycolipid MPIase essential for membrane protein integration in vivo.

  • Katsuhiro Sawasato‎ et al.
  • Scientific reports‎
  • 2019‎

MPIase is a glycolipid that is involved in membrane protein integration. Despite evaluation of its functions in vitro, the lack of information on MPIase biosynthesis hampered verification of its involvement in vivo. In this study, we found that depletion of CdsA, a CDP-diacylglycerol synthase, caused not only a defect in phospholipid biosynthesis but also MPIase depletion with accumulation of the precursors of both membrane protein M13 coat protein and secretory protein OmpA. Yeast Tam41p, a mitochondrial CDP-diacylglycerol synthase, suppressed the defect in phospholipid biosynthesis, but restored neither MPIase biosynthesis, precursor processing, nor cell growth, indicating that MPIase is essential for membrane protein integration and therefore for cell growth. Consistently, we observed a severe defect in protein integration into MPIase-depleted membrane vesicles in vitro. Thus, the function of MPIase as a factor involved in protein integration was proven in vivo as well as in vitro. Moreover, Cds1p, a eukaryotic CdsA homologue, showed a potential for MPIase biosynthesis. From these results, we speculate the presence of a eukaryotic MPIase homologue.


Eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent photonic colloidal crystal hydrogel microbeads.

  • Mio Tsuchiya‎ et al.
  • Scientific reports‎
  • 2019‎

This paper presents eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent stimuli-responsive photonic colloidal crystal hydrogel (PCCG) microbeads. Thanks to the stimuli-responsive PCCG microbeads exhibiting structural color, users can obtain sensing information without depending on the viewing angle and the mechanical deformation of the flexible sensor. Temperature-responsive PCCG microbeads and ethanol-responsive PCCG microbeads were fabricated from a pre-gel solution of N-isopropylacrylamide (NIPAM) and N-methylolacrylamide (NMAM) by using a centrifuge-based droplet shooting device (CDSD). As a proof-of-concept of thin and flexible biochemical sensors, temperature- and ethanol-sensing devices were demonstrated. By comparing the structural color of the stimuli-responsive PCCG microbeads and the color chart of the device, sensing information, including skin temperature of the human body and ethanol concentration in alcoholic beverages, was obtained successively. We expect that our device design using low angle-dependent stimuli-responsive PCCG microbeads would contribute to the development of user-friendly biochemical sensor devices for monitoring environmental and healthcare targets.


Travelling ultrasound promotes vasculogenesis of three-dimensional-monocultured human umbilical vein endothelial cells.

  • Chikahiro Imashiro‎ et al.
  • Biotechnology and bioengineering‎
  • 2021‎

To generate three-dimensional tissue in vitro, promoting vasculogenesis in cell aggregates is an important factor. Here, we found that ultrasound promoted vasculogenesis of human umbilical vein endothelial cells (HUVECs). Promotion of HUVEC network formation and lumen formation were observed using our method. In addition to morphological evaluations, protein expression was quantified by western blot assays. As a result, expression of proteins related to vasculogenesis and the response to mechanical stress on cells was enhanced by exposure to ultrasound. Although several previous studies have shown that ultrasound may promote vasculogenesis, the effect of ultrasound was unclear because of unregulated ultrasound, the complex culture environment, or two-dimensional-cultured HUVECs that cannot form a lumen structure. In this study, regulated ultrasound was propagated on three-dimensional-monocultured HUVECs, which clarified the effect of ultrasound on vasculogenesis. We believe this finding may be an innovation in the tissue engineering field.


Influence of the bone graft materials used for guided bone regeneration on subsequent peri-implant inflammation: an experimental ligature-induced peri-implantitis model in Beagle dogs.

  • Ryo Sato‎ et al.
  • International journal of implant dentistry‎
  • 2022‎

We aimed to histologically evaluate the influence of bone materials used during guided bone regeneration (GBR) on subsequent peri-implantitis in an experimental ligature-induced peri-implantitis model in beagle dogs.


Development of accurate temperature regulation culture system with metallic culture vessel demonstrates different thermal cytotoxicity in cancer and normal cells.

  • Chikahiro Imashiro‎ et al.
  • Scientific reports‎
  • 2021‎

Hyperthermia has been studied as a noninvasive cancer treatment. Cancer cells show stronger thermal cytotoxicity than normal cells, which is exploited in hyperthermia. However, the absence of methods evaluating the thermal cytotoxicity in cells prevents the development of hyperthermia. To investigate the thermal cytotoxicity, culture temperature should be regulated. We, thus, developed a culture system regulating culture temperature immediately and accurately by employing metallic culture vessels. Michigan Cancer Foundation-7 cells and normal human dermal fibroblasts were used for models of cancer and normal cells. The findings showed cancer cells showed stronger thermal cytotoxicity than normal cells, which is quantitatively different from previous reports. This difference might be due to regulated culture temperature. The thermal stimulus condition (43 °C/30 min) was, further, focused for assays. The mRNA expression involving apoptosis changed dramatically in cancer cells, indicating the strong apoptotic trend. In contrast, the mRNA expression of heat shock protein (HSP) of normal cells upon the thermal stimulus was stronger than cancer cells. Furthermore, exclusively in normal cells, HSP localization to nucleus was confirmed. These movement of HSP confer thermotolerance to cells, which is consistent with the different thermal cytotoxicity between cancer and normal cells. In summary, our developed system can be used to develop hyperthermia treatment.


Akkermansia muciniphila induces slow extramedullary hematopoiesis via cooperative IL-1R/TLR signals.

  • Yuxin Wang‎ et al.
  • EMBO reports‎
  • 2023‎

Bacterial infections can activate and mobilize hematopoietic stem and progenitor cells (HSPCs) from the bone marrow (BM) to the spleen, a process termed extramedullary hematopoiesis (EMH). Recent studies suggest that commensal bacteria regulate not only the host immune system but also hematopoietic homeostasis. However, the impact of gut microbes on hematopoietic pathology remains unclear. Here, we find that systemic single injections of Akkermansia muciniphila (A. m.), a mucin-degrading bacterium, rapidly activate BM myelopoiesis and slow but long-lasting hepato-splenomegaly, characterized by the expansion and differentiation of functional HSPCs, which we term delayed EMH. Mechanistically, delayed EMH triggered by A. m. is mediated entirely by the MYD88/TRIF innate immune signaling pathway, which persistently stimulates splenic myeloid cells to secrete interleukin (IL)-1α, and in turn, activates IL-1 receptor (IL-1R)-expressing splenic HSPCs. Genetic deletion of Toll-like receptor-2 and -4 (TLR2/4) or IL-1α partially diminishes A. m.-induced delayed EMH, while inhibition of both pathways alleviates splenomegaly and EMH. Our results demonstrate that cooperative IL-1R- and TLR-mediated signals regulate commensal bacteria-driven EMH, which might be relevant for certain autoimmune disorders.


Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase.

  • Yonghoon Kwon‎ et al.
  • PloS one‎
  • 2014‎

5' AMP-activated protein kinase (AMPK) is a highly conserved serine-threonine kinase that regulates energy expenditure by activating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. Therefore AMPK activators are considered to be drug targets for treatment of metabolic diseases such as diabetes mellitus. To identify novel AMPK activators, we screened xanthene derivatives. We determined that the AMPK activators 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-nitro-phenyl)-thioureido]-ethyl}-amide (Xn) and 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-cyano-phenyl)-thioureido]-ethyl}-amide (Xc) elevated glucose uptake in L6 myotubes by stimulating translocation of glucose transporter type 4 (GLUT4). Treatment with the chemical AMPK inhibitor compound C and infection with dominant-negative AMPKa2-virus inhibited AMPK phosphorylation and glucose uptake in myotubes induced by either Xn or Xc. Of the two major upstream kinases of AMPK, we found that Xn and Xc showed LKB1 dependency by knockdown of STK11, an ortholog of human LKB1. Single intravenous administration of Xn and Xc to high-fat diet-induced diabetic mice stimulated AMPK phosphorylation of skeletal muscle and improved glucose tolerance. Taken together, these results suggest that Xn and Xc regulate glucose homeostasis through LKB1-dependent AMPK activation and that the compounds are potential candidate drugs for the treatment of type 2 diabetes mellitus.


N-Glycoform-dependent interactions of megalin with its ligands.

  • Makoto Hirano‎ et al.
  • Biochimica et biophysica acta. General subjects‎
  • 2017‎

Megalin is a 600-kDa single-spanning transmembrane glycoprotein and functions as an endocytic receptor, distributed not only in the kidney but also in other tissues. Structurally and functionally distinct ligands for megalin have been identified. Megalin has 30 potential N-glycosylation sites in its extracellular domain. We found that megalin interacts with its ligands in a glycoform-dependent manner.


Urinary exosome-derived microRNAs reflecting the changes of renal function and histopathology in dogs.

  • Osamu Ichii‎ et al.
  • Scientific reports‎
  • 2017‎

MicroRNAs act as post-transcriptional regulators, and urinary exosome (UExo)-derived microRNAs may be used as biomarkers. Herein, we screened for UExo-derived microRNAs reflecting kidney disease (KD) status in dogs. Examined dogs were divided into healthy kidney control (HC) and KD groups according to renal dysfunction. We confirmed the appearance of UExo having irregular globe-shapes in a dog by immunoblot detection of the exosome markers, TSG101 and CD9. Based on our previous data using KD model mice and the data obtained herein by next generation sequencing of UExo-derived microRNAs in dogs, miR-26a, miR-146a, miR-486, miR-21a, and miR-10a/b were selected as candidate microRNAs. In particular, UExo-derived miR-26a and miR-10a/b were significantly decreased in KD dogs, and miR-26a levels negatively correlated with deteriorated renal function compared to the other miRNAs. UExo-derived miR-21a levels corrected or not to that of internal control microRNAs in UExo, miR-26a and miR-191, significantly increased with renal dysfunction. In kidney tissues, the decrease of miR-26a and miR-10a/b in the glomerulus and miR-10b in the tubulointerstitium negatively correlated with deteriorated renal function and histopathology. Increased miR-21a in the tubulointerstitium rather than in the glomerulus correlated with deteriorated renal histopathology. In conclusion, microRNAs reflecting the changes in renal function and histopathology in dogs were identified in this study.


Detachment of cell sheets from clinically ubiquitous cell culture vessels by ultrasonic vibration.

  • Chikahiro Imashiro‎ et al.
  • Scientific reports‎
  • 2020‎

Proteinases that digest the extracellular matrix are usually used to harvest cells from culture vessels in a general culture process, which lowers the initial adhesion rate in regenerative medicine. Cell sheet engineering is one of the most important technologies in this field, especially for transplantation, because fabricated cell sheets have rich extracellular matrixes providing strong initial adhesion. Current cell sheet fabrication relies on temperature-responsive polymer-coated dishes. Cells are cultured on such specialized dishes and subjected to low temperature. Thus, we developed a simple but versatile cell sheet fabrication method using ubiquitous culture dishes/flasks without any coating or temperature modulation. Confluent mouse myoblasts (C2C12 cell line) were exposed to ultrasonic vibration from underneath and detached as cell sheets from entire culture surfaces. Because of the absence of low temperature, cell metabolism was statically increased compared with the conventional method. Furthermore, viability, morphology, protein expression, and mRNA expression were normal. These analyses indicated no side effects of ultrasonic vibration exposure. Therefore, this novel method may become the standard for cell sheet fabrication. Our method can be easily conducted following a general culture procedure with a typical dish/flask, making cell sheets more accessible to medical experts.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: