Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves.

  • Yuta Kurashina‎ et al.
  • Communications biology‎
  • 2019‎

Cell detachment is essential in culturing adherent cells. Trypsinization is the most popular detachment technique, even though it reduces viability due to the damage to the membrane and extracellular matrix. Avoiding such damage would improve cell culture efficiency. Here we propose an enzyme-free cell detachment method that employs the acoustic pressure, sloshing in serum-free medium from intermittent traveling wave. This method detaches 96.2% of the cells, and increases its transfer yield to 130% of conventional methods for 48 h, compared to the number of cells detached by trypsinization. We show the elimination of trypsinization reduces cell damage, improving the survival of the detached cells. Acoustic pressure applied to the cells and media sloshing from the intermittent traveling wave were identified as the most important factors leading to cell detachment. This proposed method will improve biopharmaceutical production by expediting the amplification of tissue-cultured cells through a more efficient transfer process.


Effect of Mechanical Compression on Invasion Process of Malignant Melanoma Using In Vitro Three-Dimensional Cell Culture Device.

  • Takashi Morikura‎ et al.
  • Micromachines‎
  • 2019‎

Malignant melanoma in the plantar surface of the foot is subjected to various mechanical stimuli generated by daily human activity such as walking. Some studies have reported that mechanical compression affects the development and progression of melanoma. However, little is known about how mechanical compression affects the behavior of malignant melanoma cells in a physiological condition due to the complexity of the invasion mechanisms. In this study, we developed an in vitro three-dimensional cell culture device using microporous membrane in order to evaluate the effects of mechanical compression on the invasion process of malignant melanoma. Our results suggest that the invasion of melanoma cells under the compressive stress for 8 h of culture was promoted with the elongation of F-actin filaments compared to control groups, whereas there was no significant difference between both groups at 32 h of culture, with increasing cell death associated with promoting melanin synthesis. The results of this study contribute to the elucidation of the invasion mechanisms of malignant melanoma caused by mechanical stimulation.


Tactile Estimation of Molded Plastic Plates Based on the Estimated Impulse Responses of Mechanoreceptive Units.

  • Lisako Nobuyama‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2018‎

This study proposes a tactile estimation method of molded plastic plates based on human tactile perception characteristics. Plastic plates are often used in consumer products. The tactile evaluation plays an important role in product development. However, physical quantities not taking into account human tactile perception have been employed in previous tactile estimation procedures. Hence, in this study, we adopted the vibrational thresholds of the mechanoreceptive units-FA I, FA II, SA I and SA II-for stimuli detection and developed a tactile estimation method for plastic plates that clarified the mechanoreceptive units related to tactile sensation. The developed tactile sensor consists of a base and a silicone rubber pad that contains strain gauges in it. We detected vibration during touch by the sensor and calculated the estimation of the firing values of the cutaneous mechanoreceptors, which are the essential data obtained by humans during tactile perception, in comparison to the amplitude spectrum of the vibration with the threshold amplitude of each mechanoreceptive unit. Simultaneously, we calculated the relationship between the normal and tangential forces recorded while the sensor ran over the samples. As a result of stepwise linear regression analysis using these values as explanatory variables, the evaluation scores for Soft were successfully estimated using the firing value of FA II and the relationship between normal/tangential forces, and the evaluation scores for Rough were estimated using the SA I firing value.


Effect of Cyclic Stretch on Tissue Maturation in Myoblast-Laden Hydrogel Fibers.

  • Shinako Bansai‎ et al.
  • Micromachines‎
  • 2019‎

Engineering of the skeletal muscles has attracted attention for the restoration of damaged muscles from myopathy, injury, and extraction of malignant tumors. Reconstructing a three-dimensional muscle using living cells could be a promising approach. However, the regenerated tissue exhibits a weak construction force due to the insufficient tissue maturation. The purpose of this study is to establish the reconstruction system for the skeletal muscle. We used a cell-laden core-shell hydrogel microfiber as a three-dimensional culture to control the cellular orientation. Moreover, to mature the muscle tissue in the microfiber, we also developed a custom-made culture device for imposing cyclic stretch stimulation using a motorized stage and the fiber-grab system. As a result, the directions of the myotubes were oriented and the mature myotubes could be formed by cyclic stretch stimulation.


Evaluation of Lipid Accumulation Using Electrical Impedance Measurement under Three-Dimensional Culture Condition.

  • Daiki Zemmyo‎ et al.
  • Micromachines‎
  • 2019‎

The degeneration of adipocyte has been reported to cause obesity, metabolic syndrome, and other diseases. To treat these diseases, an effective in vitro evaluation and drug-screening system for adipocyte culture is required. The objective of this study is to establish an in vitro three-dimensional cell culture system to enable the monitoring of lipid accumulation by measuring electrical impedance, and to determine the relationship between the impedance and lipid accumulation of adipocytes cultured three dimensionally. Consequently, pre-adipocytes, 3T3-L1 cells, were cultured and differentiated to the adipocytes in our culture system, and the electrical impedance of the three-dimensional adipocyte culture at a high frequency was related to the lipid accumulation of the adipocytes. In conclusion, the lipid accumulation of adipocytes could be evaluated in real time by monitoring the electrical impedance during in vitro culture.


Auto/paracrine factors and early Wnt inhibition promote cardiomyocyte differentiation from human induced pluripotent stem cells at initial low cell density.

  • Minh Nguyen Tuyet Le‎ et al.
  • Scientific reports‎
  • 2021‎

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) have received increasing attention for their clinical use. Many protocols induce cardiomyocytes at an initial high cell density (confluence) to utilize cell density effects as hidden factors for cardiomyocyte differentiation. Previously, we established a protocol to induce hiPSC differentiation into cardiomyocytes using a defined culture medium and an initial low cell density (1% confluence) to minimize the hidden factors. Here, we investigated the key factors promoting cardiomyocyte differentiation at an initial low cell density to clarify the effects of cell density. Co-culture of hiPSCs at an initial low cell density with those at an initial high cell density showed that signals secreted from cells (auto/paracrine factors) and not cell-cell contact signals, played an important role in cardiomyocyte differentiation. Moreover, although cultures with initial low cell density showed higher expression of anti-cardiac mesoderm genes, earlier treatment with a Wnt production inhibitor efficiently suppressed the anti-cardiac mesoderm gene expression and promoted cardiomyocyte differentiation by up to 80% at an initial low cell density. These results suggest that the main effect of cell density on cardiomyocyte differentiation is inhibition of Wnt signaling at the early stage of induction, through auto/paracrine factors.


Well-free agglomeration and on-demand three-dimensional cell cluster formation using guided surface acoustic waves through a couplant layer.

  • Jiyang Mei‎ et al.
  • Biomedical microdevices‎
  • 2022‎

Three-dimensional cell agglomerates are broadly useful in tissue engineering and drug testing. We report a well-free method to form large (1.4-mm) multicellular clusters using 100-MHz surface acoustic waves (SAW) without direct contact with the media or cells. A fluid couplant is used to transform the SAW into acoustic streaming in the cell-laden media held in a petri dish. The couplant transmits longitudinal sound waves, forming a Lamb wave in the petri dish that, in turn, produces longitudinal sound in the media. Due to recirculation, human embryonic kidney (HEK293) cells in the dish are carried to the center of the coupling location, forming a cluster in less than 10 min. A few minutes later, these clusters may then be translated and merged to form large agglomerations, and even repeatedly folded to produce a roughly spherical shape of over 1.4 mm in diameter for incubation-without damaging the existing intercellular bonds. Calcium ion signaling through these clusters and confocal images of multiprotein junctional complexes suggest a continuous tissue construct: intercellular communication. They may be formed at will, and the method is feasibly useful for formation of numerous agglomerates in a single petri dish.


Three-Dimensional Cell Drawing Technique in Hydrogel Using Micro Injection System.

  • Takuya Shinagawa‎ et al.
  • Micromachines‎
  • 2022‎

Fabrication of three-dimensional tissues using living cells is a promised approach for drug screening experiment and in vitro disease modeling. To study a physiological neuronal function, three-dimensional cell patterning and construction of neuronal cell network were required. In this study, we proposed a three-dimensional cell drawing methodology in hydrogel to construct the three-dimensional neuronal cell network. PC-12 cells, which were used as neuronal cell differentiation model, were dispensed into a collagen hydrogel using a micro injector with a three-dimensional position control. To maintain the three-dimensional position of cells, atelocollagen was kept at sol-gel transition state during cell dispensing. As the results, PC-12 cells were patterned in the atelocollagen gel to form square pattern with different depth. In the patterned cellular lines, PC-12 cells elongated neurites and form a continuous cellular network in the atelocollagen gel. It was suggested that our three-dimensional cell drawing technology has potentials to reconstruct three-dimensional neuronal networks for an investigation of physiological neuronal functions.


Enzyme-free passage of human pluripotent stem cells by controlling divalent cations.

  • Kiyoshi Ohnuma‎ et al.
  • Scientific reports‎
  • 2014‎

Enzymes used for passaging human pluripotent stem cells (hPSCs) digest cell surface proteins, resulting in cell damage. Moreover, cell dissociation using divalent cation-free solutions causes apoptosis. Here we report that Mg(2+) and Ca(2+) control cell-fibronectin and cell-cell binding of hPSCs, respectively, under feeder- and serum-free culture conditions without enzyme. The hPSCs were detached from fibronectin-, vitronectin- or laminin-coated dishes in low concentrations of Mg(2+) and remained as large colonies in high concentrations of Ca(2+). Using enzyme-free solutions containing Ca(2+) without Mg(2+), we successfully passaged hPSCs as large cell clumps that showed less damage than cells passaged using a divalent cation-free solution or dispase. Under the same conditions, the undifferentiated and early-differentiated cells could also be harvested as a cell sheet without being split off. Our enzyme-free passage of hPSCs under a serum- and feeder-free culture condition reduces cell damage and facilitates easier and safer cultures of hPSCs.


Influences of Microscopic Imaging Conditions on Accuracy of Cell Morphology Discrimination Using Convolutional Neural Network of Deep Learning.

  • Masashi Yamamoto‎ et al.
  • Micromachines‎
  • 2022‎

Recently, automated cell culture devices have become necessary for cell therapy applications. The maintenance of cell functions is critical for cell expansion. However, there are risks of losing these functions, owing to disturbances in the surrounding environment and culturing procedures. Therefore, there is a need for a non-invasive and highly accurate evaluation method for cell phenotypes. In this study, we focused on an automated discrimination technique using image processing with a deep learning algorithm. This study aimed to clarify the effects of the optical magnification of the microscope and cell size in each image on the discrimination accuracy for cell phenotypes and morphologies. Myoblast cells (C2C12 cell line) were cultured and differentiated into myotubes. Microscopic images of the cultured cells were acquired at magnifications of 40× and 100×. A deep learning architecture was constructed to discriminate between undifferentiated and differentiated cells. The discrimination accuracy exceeded 90% even at a magnification of 40× for well-developed myogenic differentiation. For the cells under immature myogenic differentiation, a high optical magnification of 100× was required to maintain a discrimination accuracy over 90%. The microscopic optical magnification should be adjusted according to the cell differentiation to improve the efficiency of image-based cell discrimination.


Thalidomide affects limb formation and multiple myeloma related genes in human induced pluripotent stem cells and their mesoderm differentiation.

  • Maho Shimizu‎ et al.
  • Biochemistry and biophysics reports‎
  • 2021‎

Although thalidomide is highly teratogenic, it has been prescribed for treating multiple myeloma and Hansen's disease. However, its mechanism of action is not fully understood. Here, we employed a reverse transcription quantitative PCR array to measure the expression of 84 genes in human induced pluripotent stem cells (hiPSCs) and their mesodermal differentiation. Thalidomide altered the expression of undifferentiated marker genes in both cell types. Thalidomide affected more genes in the mesoderm than in the hiPSCs. Ectoderm genes were upregulated but mesendoderm genes were downregulated by thalidomide during mesoderm induction, suggesting that thalidomide altered mesoderm differentiation. We found that FABP7 (fatty acid binding protein 7) was dramatically downregulated in the hiPSCs. FABP is related to retinoic acid, which is important signaling for limb formation. Moreover, thalidomide altered the expression of the genes involved in TGF-β signaling, limb formation, and multiple myeloma, which are related to thalidomide-induced malformations and medication. In summary, iPSCs can serve as useful tools to elucidate the mechanisms underlying thalidomide malformations in vitro.


Fundamental Study of Decellularization Method Using Cyclic Application of High Hydrostatic Pressure.

  • Daiki Zemmyo‎ et al.
  • Micromachines‎
  • 2020‎

Decellularized tissues are promising materials that mainly consist of extracellular matrices (ECMs) obtained by removing all cells from organs and tissues. High hydrostatic pressure (HHP) has been used for decellularization to remove cells physically from organs or tissues rather than by chemical methods. However, ultrahigh pressure induces denaturation of the ECM structure. In this study, we examined the effects of cyclic HHP at low and high pressures on the cell membrane structure to establish a novel decellularization method that enables decellularization without the denaturation of the ECM. A decellularization device using cyclic HHP (maximum pressure: 250 MPa, cycle number: 5) was developed. NB1RGB cell suspension was injected into a plastic bag to be subjected to cyclic HHP. After applying cyclic HHP, the amount of DNA inside the cells and the morphological changes of the cells were evaluated. As a result, the amount of DNA inside the cells decreased after the cyclic HHP compared to the static HHP. In addition, cyclic HHP was suggested to promote the destruction of the cell and nuclear membrane. In conclusion, it was revealed that the cell structure could be denatured and destroyed by cyclic HHP at a lower level than that of previous approaches.


Slow diffusion on the monolayer culture enhances auto/paracrine effects of Noggin in differentiation of human iPS cells induced by BMP.

  • Eri Nakatani‎ et al.
  • Biochemistry and biophysics reports‎
  • 2022‎

Auto/paracrine factors secreted from cells affect differentiation of human pluripotent stem cells (hPSCs). However, the molecular mechanisms underlying the role of secreted factors are not well known. We previously showed that pattern formation in hPSCs induced by BMP4 could be reproduced by a simple reaction-diffusion of BMP and Noggin, a cell-secreted BMP4 inhibitor. However, the amount of Noggin secreted is unknown. In this study, we measured the concentration of Noggin secreted during the differentiation of hPSCs induced by BMP4. The Noggin concentration in the supernatant before and after differentiation was constant at approximately 0.69 ng/mL, which is approximately 50-200 times less than expected in the model. To explain the difference between the experiment and model, we assumed that macromolecules such as heparan sulfate proteoglycan on the cell surface act as a diffusion barrier structure, where the diffusion slows down to 1/400. The model with the diffusion barrier structure reduced the Noggin concentration required to suppress differentiation in the static culture model. The model also qualitatively reproduced the pattern formation, in which only the upstream but not the downstream hPSCs were differentiated in a one-directional perfusion culture chamber, with a small change in the amount of secreted Noggin resulting in a large change in the differentiation position. These results suggest that the diffusion barrier on the cell surface might enhance the auto/paracrine effects on monolayer hPSC culture.


Dielectrophoretic Micro-Organization of Chondrocytes to Regenerate Mechanically Anisotropic Cartilaginous Tissue.

  • Yoshitaka Takeuchi‎ et al.
  • Micromachines‎
  • 2021‎

Recently, many studies have focused on the repair and regeneration of damaged articular cartilage using tissue engineering. In tissue engineering therapy, cells are cultured in vitro to create a three-dimensional (3-D) tissue designed to replace the damaged cartilage. Although tissue engineering is a useful approach to regenerating cartilage, mechanical anisotropy has not been reconstructed from a cellular organization level. This study aims to create mechanically anisotropic cartilaginous tissue using dielectrophoretic cell patterning and gel-sheet lamination. Bovine chondrocytes were patterned in a hydrogel to form line-array cell clusters via negative dielectrophoresis (DEP). The results indicate that the embedded chondrocytes remained viable and reconstructed cartilaginous tissue along the patterned cell array. Moreover, the agarose gel, in which chondrocytes were patterned, demonstrated mechanical anisotropy. In summary, our DEP cell patterning and gel-sheet lamination techniques would be useful for reconstructing mechanically anisotropic cartilage tissues.


Development of accurate temperature regulation culture system with metallic culture vessel demonstrates different thermal cytotoxicity in cancer and normal cells.

  • Chikahiro Imashiro‎ et al.
  • Scientific reports‎
  • 2021‎

Hyperthermia has been studied as a noninvasive cancer treatment. Cancer cells show stronger thermal cytotoxicity than normal cells, which is exploited in hyperthermia. However, the absence of methods evaluating the thermal cytotoxicity in cells prevents the development of hyperthermia. To investigate the thermal cytotoxicity, culture temperature should be regulated. We, thus, developed a culture system regulating culture temperature immediately and accurately by employing metallic culture vessels. Michigan Cancer Foundation-7 cells and normal human dermal fibroblasts were used for models of cancer and normal cells. The findings showed cancer cells showed stronger thermal cytotoxicity than normal cells, which is quantitatively different from previous reports. This difference might be due to regulated culture temperature. The thermal stimulus condition (43 °C/30 min) was, further, focused for assays. The mRNA expression involving apoptosis changed dramatically in cancer cells, indicating the strong apoptotic trend. In contrast, the mRNA expression of heat shock protein (HSP) of normal cells upon the thermal stimulus was stronger than cancer cells. Furthermore, exclusively in normal cells, HSP localization to nucleus was confirmed. These movement of HSP confer thermotolerance to cells, which is consistent with the different thermal cytotoxicity between cancer and normal cells. In summary, our developed system can be used to develop hyperthermia treatment.


Travelling ultrasound promotes vasculogenesis of three-dimensional-monocultured human umbilical vein endothelial cells.

  • Chikahiro Imashiro‎ et al.
  • Biotechnology and bioengineering‎
  • 2021‎

To generate three-dimensional tissue in vitro, promoting vasculogenesis in cell aggregates is an important factor. Here, we found that ultrasound promoted vasculogenesis of human umbilical vein endothelial cells (HUVECs). Promotion of HUVEC network formation and lumen formation were observed using our method. In addition to morphological evaluations, protein expression was quantified by western blot assays. As a result, expression of proteins related to vasculogenesis and the response to mechanical stress on cells was enhanced by exposure to ultrasound. Although several previous studies have shown that ultrasound may promote vasculogenesis, the effect of ultrasound was unclear because of unregulated ultrasound, the complex culture environment, or two-dimensional-cultured HUVECs that cannot form a lumen structure. In this study, regulated ultrasound was propagated on three-dimensional-monocultured HUVECs, which clarified the effect of ultrasound on vasculogenesis. We believe this finding may be an innovation in the tissue engineering field.


Mechanical Intermittent Compression Affects the Progression Rate of Malignant Melanoma Cells in a Cycle Period-Dependent Manner.

  • Takashi Morikura‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2021‎

Static mechanical compression is a biomechanical factor that affects the progression of melanoma cells. However, little is known about how dynamic mechanical compression affects the progression of melanoma cells. In the present study, we show that mechanical intermittent compression affects the progression rate of malignant melanoma cells in a cycle period-dependent manner. Our results suggest that intermittent compression with a cycle of 2 h on/2 h off could suppress the progression rate of melanoma cells by suppressing the elongation of F-actin filaments and mRNA expression levels related to collagen degradation. In contrast, intermittent compression with a cycle of 4 h on/4 h off could promote the progression rate of melanoma cells by promoting cell proliferation and mRNA expression levels related to collagen degradation. Mechanical intermittent compression could therefore affect the progression rate of malignant melanoma cells in a cycle period-dependent manner. Our results contribute to a deeper understanding of the physiological responses of melanoma cells to dynamic mechanical compression.


Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase.

  • Yonghoon Kwon‎ et al.
  • PloS one‎
  • 2014‎

5' AMP-activated protein kinase (AMPK) is a highly conserved serine-threonine kinase that regulates energy expenditure by activating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. Therefore AMPK activators are considered to be drug targets for treatment of metabolic diseases such as diabetes mellitus. To identify novel AMPK activators, we screened xanthene derivatives. We determined that the AMPK activators 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-nitro-phenyl)-thioureido]-ethyl}-amide (Xn) and 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-cyano-phenyl)-thioureido]-ethyl}-amide (Xc) elevated glucose uptake in L6 myotubes by stimulating translocation of glucose transporter type 4 (GLUT4). Treatment with the chemical AMPK inhibitor compound C and infection with dominant-negative AMPKa2-virus inhibited AMPK phosphorylation and glucose uptake in myotubes induced by either Xn or Xc. Of the two major upstream kinases of AMPK, we found that Xn and Xc showed LKB1 dependency by knockdown of STK11, an ortholog of human LKB1. Single intravenous administration of Xn and Xc to high-fat diet-induced diabetic mice stimulated AMPK phosphorylation of skeletal muscle and improved glucose tolerance. Taken together, these results suggest that Xn and Xc regulate glucose homeostasis through LKB1-dependent AMPK activation and that the compounds are potential candidate drugs for the treatment of type 2 diabetes mellitus.


Imaging-cytometry revealed spatial heterogeneities of marker expression in undifferentiated human pluripotent stem cells.

  • Mika Suga‎ et al.
  • In vitro cellular & developmental biology. Animal‎
  • 2017‎

Human pluripotent stem cells (hPSCs) provide a good model system for studying human development and are expected as a source for both cell-based medical and pharmaceutical research application. However, stable maintenance of undifferentiated hPSCs is yet challenging, and thus routine characterization is required. Flow-cytometry is one of the popular quantitative characterization tools for hPSCs, but it has drawback of spatial information loss of the cells in the culture. Here, we have applied a two-dimensional imaging cytometry that examines undifferentiated state of hPSCs to analyze localization and morphological information of immunopositive cells in the culture. The whole images of cells in a culture vessel were acquired and analyzed by an image analyzer, IN Cell Analyzer 2000, and determined staining intensity of the cells with their positional information. We have compared the expression of five hPSC-markers in four hPSC lines using the two-dimensional imaging cytometry and flow cytometry. The results showed that immunopositive ratios analyzed by the imaging cytometry had good correlation with those by the flow cytometry. Furthermore, the imaging cytometry revealed spatially heterogenic expression of hPSC-markers in undifferentiated hPSCs. Imaging cytometry is capable of reflecting minute aberrance without losing spatial and morphological information of the cells. It would be a powerful, useful, and time-efficient tool for characterizing hPSC colonies.


Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm.

  • Yuta Yamamoto‎ et al.
  • PloS one‎
  • 2018‎

Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial-mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial-mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: