Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Common and variable clinical, histological, and imaging findings of recessive RYR1-related centronuclear myopathy patients.

  • Osorio Abath Neto‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2017‎

Mutations in RYR1 give rise to diverse skeletal muscle phenotypes, ranging from classical central core disease to susceptibility to malignant hyperthermia. Next-generation sequencing has recently shown that RYR1 is implicated in a wide variety of additional myopathies, including centronuclear myopathy. In this work, we established an international cohort of 21 patients from 18 families with autosomal recessive RYR1-related centronuclear myopathy, to better define the clinical, imaging, and histological spectrum of this disorder. Early onset of symptoms with hypotonia, motor developmental delay, proximal muscle weakness, and a stable course were common clinical features in the cohort. Ptosis and/or ophthalmoparesis, facial weakness, thoracic deformities, and spinal involvement were also frequent but variable. A common imaging pattern consisted of selective involvement of the vastus lateralis, adductor magnus, and biceps brachii in comparison to adjacent muscles. In addition to a variable prominence of central nuclei, muscle biopsy from 20 patients showed type 1 fiber predominance and a wide range of intermyofibrillary architecture abnormalities. All families harbored compound heterozygous mutations, most commonly a truncating mutation combined with a missense mutation. This work expands the phenotypic characterization of patients with recessive RYR1-related centronuclear myopathy by highlighting common and variable clinical, histological, and imaging findings in these patients.


Relationship between muscle impairments, postural stability, and gait parameters assessed with lower-trunk accelerometry in myotonic dystrophy type 1.

  • Damien Bachasson‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2016‎

This study evaluated gait using lower-trunk accelerometry and investigated relationships between gait abnormalities, postural instability, handgrip myotonia, and weakness in lower-limb and axial muscle groups commonly affected in myotonic dystrophy type 1 (DM1). Twenty-two patients (11 men, 11 women; age = 42 years (range: 26-51)) with DM1 and twenty healthy controls (9 men, 11 women; age = 44 years (range: 24-50)) participated in this study. Gait analysis using lower-trunk accelerometry was performed at self-selected walking pace. Postural stability was measured via center of pressure displacement analysis using a force platform during eyes-closed normal stance. Handgrip myotonia was quantified using force-relaxation curve modeling. Patients displayed lower walking speed, stride frequency, stride length, gait regularity, and gait symmetry. Strength of ankle plantar flexors, ankle dorsal flexors and neck flexors correlated with interstride regularity in the vertical direction (ρ = 0.57, ρ = 0.59, and ρ = 0.44, respectively; all P < 0.05). Knee extension strength correlated with gait symmetry in the anteroposterior direction (ρ = 0.45, P < 0.05). Center of pressure velocity was greater in patients and correlated with neck flexion and ankle plantar flexion weakness (ρ = -0.51 and ρ = -0.62, respectively; both P < 0.05), and with interstride regularity in the vertical direction (ρ = -0.58, P < 0.05). No correlation was found between handgrip myotonia and any other variable studied. Lower-trunk accelerometry allows the characterization of gait pattern abnormalities in patients with DM1. Further studies are required to determine the relevance of systematic gait analysis using lower-trunk accelerometry for patient follow-up and intervention planning.


Most expression and splicing changes in myotonic dystrophy type 1 and type 2 skeletal muscle are shared with other muscular dystrophies.

  • Linda L Bachinski‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2014‎

The prevailing pathomechanistic paradigm for myotonic dystrophy (DM) is that aberrant expression of embryonic/fetal mRNA/protein isoforms accounts for most aspects of the pleiotropic phenotype. To identify aberrant isoforms in skeletal muscle of DM1 and DM2 patients, we performed exon-array profiling and RT-PCR validation on the largest DM sample set to date, including Duchenne, Becker and tibial muscular dystrophy (NMD) patients as disease controls, and non-disease controls. Strikingly, most expression and splicing changes in DM patients were shared with NMD controls. Comparison between DM and NMD identified almost no significant differences. We conclude that DM1 and DM2 are essentially identical for dysregulation of gene expression, and DM expression changes represent a subset of broader spectrum dystrophic changes. We found no evidence for qualitative splicing differences between DM1 and DM2. While some DM-specific splicing differences exist, most of the DM splicing differences were also seen in NMD controls. SSBP3 exon 6 missplicing was observed in all diseased muscle and led to reduced protein. We conclude there is no widespread DM-specific spliceopathy in skeletal muscle and suggest that missplicing in DM (and NMD) may not be the driving mechanism for the muscle pathology, since the same pathways show expression changes unrelated to splicing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: