Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Tuning promoter boundaries improves regulatory motif discovery in nonmodel plants: the peach example.

  • Najla Ksouri‎ et al.
  • Plant physiology‎
  • 2021‎

The identification of functional elements encoded in plant genomes is necessary to understand gene regulation. Although much attention has been paid to model species like Arabidopsis (Arabidopsis thaliana), little is known about regulatory motifs in other plants. Here, we describe a bottom-up approach for de novo motif discovery using peach (Prunus persica) as an example. These predictions require pre-computed gene clusters grouped by their expression similarity. After optimizing the boundaries of proximal promoter regions, two motif discovery algorithms from RSAT::Plants (http://plants.rsat.eu) were tested (oligo and dyad analysis). Overall, 18 out of 45 co-expressed modules were enriched in motifs typical of well-known transcription factor (TF) families (bHLH, bZip, BZR, CAMTA, DOF, E2FE, AP2-ERF, Myb-like, NAC, TCP, and WRKY) and a few uncharacterized motifs. Our results indicate that small modules and promoter window of [-500 bp, +200 bp] relative to the transcription start site (TSS) maximize the number of motifs found and reduce low-complexity signals in peach. The distribution of discovered regulatory sites was unbalanced, as they accumulated around the TSS. This approach was benchmarked by testing two different expression-based clustering algorithms (network-based and hierarchical) and, as control, genes grouped for harboring ChIPseq peaks of the same Arabidopsis TF. The method was also verified on maize (Zea mays), a species with a large genome. In summary, this article presents a glimpse of the peach regulatory components at genome scale and provides a general protocol that can be applied to other species. A Docker software container is released to facilitate the reproduction of these analyses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: