Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 46 papers

A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression.

  • Eva Alloza‎ et al.
  • BMC medical genomics‎
  • 2011‎

Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs), will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene.


A Novel Approach for the Identification of Pharmacogenetic Variants in MT-RNR1 through Next-Generation Sequencing Off-Target Data.

  • Javier Lanillos‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

Specific genetic variants in the mitochondrially encoded 12S ribosomal RNA gene (MT-RNR1) cause aminoglycoside-induced irreversible hearing loss. Mitochondrial DNA is usually not included in targeted sequencing experiments; however, off-target data may deliver this information. Here, we extract MT-RNR1 genetic variation, including the most relevant ototoxicity variant m.1555A>G, using the off-target reads of 473 research samples, sequenced through a capture-based, custom-targeted panel and whole exome sequencing (WES), and of 1245 diagnostic samples with clinical WES. Sanger sequencing and fluorescence-based genotyping were used for genotype validation. There was a correlation between off-target reads and mitochondrial coverage (rcustomPanel = 0.39, p = 2 × 10-13 and rWES = 0.67, p = 7 × 10-21). The median read depth of MT-RNR1 m.1555 was similar to the average mitochondrial genome coverage, with saliva and blood samples giving comparable results. The genotypes from 415 samples, including three m.1555G carriers, were concordant with fluorescence-based genotyping data. In clinical WES, median MT-RNR1 coverage was 56×, with 90% of samples having ≥20 reads at m.1555 position, and one m.1494T and three m.1555G carriers were identified with no evidence for heteroplasmy. Altogether, this study shows that obtaining MT-RNR1 genotypes through off-target reads is an efficient strategy that can impulse preemptive pharmacogenetic screening of this mitochondrial gene.


Novel DNMT3A Germline Variant in a Patient with Multiple Paragangliomas and Papillary Thyroid Carcinoma.

  • Sara Mellid‎ et al.
  • Cancers‎
  • 2020‎

Over the past few years, next generation technologies have been applied to unravel the genetics of rare inherited diseases, facilitating the discovery of new susceptibility genes. We recently found germline DNMT3A gain-of-function variants in two patients with head and neck paragangliomas causing a characteristic hypermethylated DNA profile. Here, whole-exome sequencing identifies a novel germline DNMT3A variant (p.Gly332Arg) in a patient with bilateral carotid paragangliomas, papillary thyroid carcinoma and idiopathic intellectual disability. The variant, located in the Pro-Trp-Trp-Pro (PWWP) domain of the protein involved in chromatin targeting, affects a residue mutated in papillary thyroid tumors and located between the two residues found mutated in microcephalic dwarfism patients. Structural modelling of the variant in the DNMT3A PWWP domain predicts that the interaction with H3K36me3 will be altered. An increased methylation of DNMT3A target genes, compatible with a gain-of-function effect of the alteration, was observed in saliva DNA from the proband and in one independent acute myeloid leukemia sample carrying the same p.Gly332Arg variant. Although further studies are needed to support a causal role of DNMT3A variants in paraganglioma, the description of a new DNMT3A alteration in a patient with multiple clinical features suggests a heterogeneous phenotypic spectrum related to DNMT3A germline variants.


Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background.

  • Martin Ullrich‎ et al.
  • Cancers‎
  • 2019‎

Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel-Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.


In Silico Drug Prescription for Targeting Cancer Patient Heterogeneity and Prediction of Clinical Outcome.

  • Elena Piñeiro-Yáñez‎ et al.
  • Cancers‎
  • 2019‎

In silico drug prescription tools for precision cancer medicine can match molecular alterations with tailored candidate treatments. These methodologies require large and well-annotated datasets to systematically evaluate their performance, but this is currently constrained by the lack of complete patient clinicopathological data. Moreover, in silico drug prescription performance could be improved by integrating additional tumour information layers like intra-tumour heterogeneity (ITH) which has been related to drug response and tumour progression. PanDrugs is an in silico drug prescription method which prioritizes anticancer drugs combining both biological and clinical evidence. We have systematically evaluated PanDrugs in the Genomic Data Commons repository (GDC). Our results showed that PanDrugs is able to establish an a priori stratification of cancer patients treated with Epidermal Growth Factor Receptor (EGFR) inhibitors. Patients labelled as responders according to PanDrugs predictions showed a significantly increased overall survival (OS) compared to non-responders. PanDrugs was also able to suggest alternative tailored treatments for non-responder patients. Additionally, PanDrugs usefulness was assessed considering spatial and temporal ITH in cancer patients and showed that ITH can be approached therapeutically proposing drugs or combinations potentially capable of targeting the clonal diversity. In summary, this study is a proof of concept where PanDrugs predictions have been correlated to OS and can be useful to manage ITH in patients while increasing therapeutic options and demonstrating its clinical utility.


Activation of the integrated stress response is a vulnerability for multidrug-resistant FBXW7-deficient cells.

  • Laura Sanchez-Burgos‎ et al.
  • EMBO molecular medicine‎
  • 2022‎

FBXW7 is one of the most frequently mutated tumor suppressors, deficiency of which has been associated with resistance to some anticancer therapies. Through bioinformatics and genome-wide CRISPR screens, we here reveal that FBXW7 deficiency leads to multidrug resistance (MDR). Proteomic analyses found an upregulation of mitochondrial factors as a hallmark of FBXW7 deficiency, which has been previously linked to chemotherapy resistance. Despite this increased expression of mitochondrial factors, functional analyses revealed that mitochondria are under stress, and genetic or chemical targeting of mitochondria is preferentially toxic for FBXW7-deficient cells. Mechanistically, the toxicity of therapies targeting mitochondrial translation such as the antibiotic tigecycline relates to the activation of the integrated stress response (ISR) in a GCN2 kinase-dependent manner. Furthermore, the discovery of additional drugs that are toxic for FBXW7-deficient cells showed that all of them unexpectedly activate a GCN2-dependent ISR regardless of their accepted mechanism of action. Our study reveals that while one of the most frequent mutations in cancer reduces the sensitivity to the vast majority of available therapies, it renders cells vulnerable to ISR-activating drugs.


GEPAS, a web-based tool for microarray data analysis and interpretation.

  • Joaquín Tárraga‎ et al.
  • Nucleic acids research‎
  • 2008‎

Gene Expression Profile Analysis Suite (GEPAS) is one of the most complete and extensively used web-based packages for microarray data analysis. During its more than 5 years of activity it has continuously been updated to keep pace with the state-of-the-art in the changing microarray data analysis arena. GEPAS offers diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and functional profiling of the experiment. New options for time-course (or dose-response) experiments, microarray-based class prediction, new clustering methods and new tests for differential expression have been included. The new pipeliner module allows automating the execution of sequential analysis steps by means of a simple but powerful graphic interface. An extensive re-engineering of GEPAS has been carried out which includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. GEPAS is nowadays the most quoted web tool in its field and it is extensively used by researchers of many countries and its records indicate an average usage rate of 500 experiments per day. GEPAS, is available at http://www.gepas.org.


Next station in microarray data analysis: GEPAS.

  • David Montaner‎ et al.
  • Nucleic acids research‎
  • 2006‎

The Gene Expression Profile Analysis Suite (GEPAS) has been running for more than four years. During this time it has evolved to keep pace with the new interests and trends in the still changing world of microarray data analysis. GEPAS has been designed to provide an intuitive although powerful web-based interface that offers diverse analysis options from the early step of preprocessing (normalization of Affymetrix and two-colour microarray experiments and other preprocessing options), to the final step of the functional annotation of the experiment (using Gene Ontology, pathways, PubMed abstracts etc.), and include different possibilities for clustering, gene selection, class prediction and array-comparative genomic hybridization management. GEPAS is extensively used by researchers of many countries and its records indicate an average usage rate of 400 experiments per day. The web-based pipeline for microarray gene expression data, GEPAS, is available at http://www.gepas.org.


A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer's Disease, Glioblastoma and Lung cancer.

  • Jon Sánchez-Valle‎ et al.
  • Scientific reports‎
  • 2017‎

Epidemiological studies indicate that patients suffering from Alzheimer's disease have a lower risk of developing lung cancer, and suggest a higher risk of developing glioblastoma. Here we explore the molecular scenarios that might underlie direct and inverse co-morbidities between these diseases. Transcriptomic meta-analyses reveal significant numbers of genes with inverse patterns of expression in Alzheimer's disease and lung cancer, and with similar patterns of expression in Alzheimer's disease and glioblastoma. These observations support the existence of molecular substrates that could at least partially account for these direct and inverse co-morbidity relationships. A functional analysis of the sets of deregulated genes points to the immune system, up-regulated in both Alzheimer's disease and glioblastoma, as a potential link between these two diseases. Mitochondrial metabolism is regulated oppositely in Alzheimer's disease and lung cancer, indicating that it may be involved in the inverse co-morbidity between these diseases. Finally, oxidative phosphorylation is a good candidate to play a dual role by decreasing or increasing the risk of lung cancer and glioblastoma in Alzheimer's disease.


Targeting pheochromocytoma/paraganglioma with polyamine inhibitors.

  • Sudhir Kumar Rai‎ et al.
  • Metabolism: clinical and experimental‎
  • 2020‎

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are neuroendocrine tumors that are mostly benign. Metastatic disease does occur in about 10% of cases of PCC and up to 25% of PGL, and for these patients no effective therapies are available. Patients with mutations in the succinate dehydrogenase subunit B (SDHB) gene tend to have metastatic disease. We hypothesized that a down-regulation in the active succinate dehydrogenase B subunit should result in notable changes in cellular metabolic profile and could present a vulnerability point for successful pharmacological targeting.


Deubiquitinase USP9X loss sensitizes renal cancer cells to mTOR inhibition.

  • Juan M Roldán-Romero‎ et al.
  • International journal of cancer‎
  • 2023‎

Mammalian target of rapamycin (mTOR) is a central regulator of mammalian metabolism and physiology. Aberrant hyperactivation of the mTOR pathway promotes tumor growth and metastasis, and can also promote tumor resistance to chemotherapy and cancer drugs; this makes mTOR an attractive cancer therapeutic target. mTOR inhibitors have been approved to treat cancer; however, the mechanisms underlying drug sensitivity remain poorly understood. Here, whole exome sequencing of three chromophobe renal cell carcinoma (chRCC) patients with exceptional mTOR inhibitor sensitivity revealed that all three patients shared somatic mutations in the deubiquitinase gene USP9X. The clonal characteristics of the mutations, which were amassed by studying multiple patients' primary and metastatic samples from various years, together with the low USP9X mutation rate in unselected chRCC series, reinforced a causal link between USP9X and mTOR inhibitor sensitivity. Rapamycin treatment of USP9X-depleted HeLa and renal cancer 786-O cells, along with the pharmacological inhibition of USP9X, confirmed that this protein plays a role in patients' sensitivity to mTOR inhibitors. USP9X was not found to exert a direct effect on mTORC1, but subsequent ubiquitylome analyses identified p62 as a direct USP9X target. Increased p62 ubiquitination and the augmented rapamycin effect upon bortezomib treatment, together with the results of p62 and LC3 immunofluorescence assays, suggested that dysregulated autophagy in USP9X-depleted cells can have a synergistic effect with mTOR inhibitors. In summary, we show that USP9X constitutes a potential novel marker of sensitivity to mTOR inhibitors in chRCC patients, and represents a clinical strategy for increasing the sensitivity to these drugs.


Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits.

  • Alberto Sanchez-Aguilera‎ et al.
  • Cancer cell‎
  • 2023‎

A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.


Clonal dynamics monitoring during clinical evolution in chronic lymphocytic leukaemia.

  • Julia González-Rincón‎ et al.
  • Scientific reports‎
  • 2019‎

Chronic lymphocytic leukaemia is the most prevalent leukaemia in Western countries. It is an incurable disease characterized by a highly variable clinical course. Chronic lymphocytic leukaemia is an ideal model for studying clonal heterogeneity and dynamics during cancer progression, response to therapy and/or relapse because the disease usually develops over several years. Here we report an analysis by deep sequencing of sequential samples taken at different times from the affected organs of two patients with 12- and 7-year disease courses, respectively. One of the patients followed a linear pattern of clonal evolution, acquiring and selecting new mutations in response to salvage therapy and/or allogeneic transplantation, while the other suffered loss of cellular tumoral clones during progression and histological transformation.


GEPAS, an experiment-oriented pipeline for the analysis of microarray gene expression data.

  • Juan M Vaquerizas‎ et al.
  • Nucleic acids research‎
  • 2005‎

The Gene Expression Profile Analysis Suite, GEPAS, has been running for more than three years. With >76,000 experiments analysed during the last year and a daily average of almost 300 analyses, GEPAS can be considered a well-established and widely used platform for gene expression microarray data analysis. GEPAS is oriented to the analysis of whole series of experiments. Its design and development have been driven by the demands of the biomedical community, probably the most active collective in the field of microarray users. Although clustering methods have obviously been implemented in GEPAS, our interest has focused more on methods for finding genes differentially expressed among distinct classes of experiments or correlated to diverse clinical outcomes, as well as on building predictors. There is also a great interest in CGH-arrays which fostered the development of the corresponding tool in GEPAS: InSilicoCGH. Much effort has been invested in GEPAS for developing and implementing efficient methods for functional annotation of experiments in the proper statistical framework. Thus, the popular FatiGO has expanded to a suite of programs for functional annotation of experiments, including information on transcription factor binding sites, chromosomal location and tissues. The web-based pipeline for microarray gene expression data, GEPAS, is available at http://www.gepas.org.


BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments.

  • Fátima Al-Shahrour‎ et al.
  • Nucleic acids research‎
  • 2006‎

We present a new version of Babelomics, a complete suite of web tools for functional analysis of genome-scale experiments, with new and improved tools. New functionally relevant terms have been included such as CisRed motifs or bioentities obtained by text-mining procedures. An improved indexing has considerably speeded up several of the modules. An improved version of the FatiScan method for studying the coordinate behaviour of groups of functionally related genes is presented, along with a similar tool, the Gene Set Enrichment Analysis. Babelomics is now more oriented to test systems biology inspired hypotheses. Babelomics can be found at http://www.babelomics.org.


PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data.

  • Elena Piñeiro-Yáñez‎ et al.
  • Genome medicine‎
  • 2018‎

Large-sequencing cancer genome projects have shown that tumors have thousands of molecular alterations and their frequency is highly heterogeneous. In such scenarios, physicians and oncologists routinely face lists of cancer genomic alterations where only a minority of them are relevant biomarkers to drive clinical decision-making. For this reason, the medical community agrees on the urgent need of methodologies to establish the relevance of tumor alterations, assisting in genomic profile interpretation, and, more importantly, to prioritize those that could be clinically actionable for cancer therapy.


Gene set internal coherence in the context of functional profiling.

  • David Montaner‎ et al.
  • BMC genomics‎
  • 2009‎

Functional profiling methods have been extensively used in the context of high-throughput experiments and, in particular, in microarray data analysis. Such methods use available biological information to define different types of functional gene modules (e.g. gene ontology -GO-, KEGG pathways, etc.) whose representation in a pre-defined list of genes is further studied. In the most popular type of microarray experimental designs (e.g. up- or down-regulated genes, clusters of co-expressing genes, etc.) or in other genomic experiments (e.g. Chip-on-chip, epigenomics, etc.) these lists are composed by genes with a high degree of co-expression. Therefore, an implicit assumption in the application of functional profiling methods within this context is that the genes corresponding to the modules tested are effectively defining sets of co-expressing genes. Nevertheless not all the functional modules are biologically coherent entities in terms of co-expression, which will eventually hinder its detection with conventional methods of functional enrichment.


Functional profiling and gene expression analysis of chromosomal copy number alterations.

  • Lucía Conde‎ et al.
  • Bioinformation‎
  • 2007‎

Contrarily to the traditional view in which only one or a few key genes were supposed to be the causative factors of diseases, we discuss the importance of considering groups of functionally related genes in the study of pathologies characterised by chromosomal copy number alterations. Recent observations have reported the existence of regions in higher eukaryotic chromosomes (including humans) containing genes of related function that show a high degree of coregulation. Copy number alterations will consequently affect to clusters of functionally related genes, which will be the final causative agents of the diseased phenotype, in many cases. Therefore, we propose that the functional profiling of the regions affected by copy number alterations must be an important aspect to take into account in the understanding of this type of pathologies. To illustrate this, we present an integrated study of DNA copy number variations, gene expression along with the functional profiling of chromosomal regions in a case of multiple myeloma.


ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling.

  • Lucía Conde‎ et al.
  • Nucleic acids research‎
  • 2007‎

We present the ISACGH, a web-based system that allows for the combination of genomic data with gene expression values and provides different options for functional profiling of the regions found. Several visualization options offer a convenient representation of the results. Different efficient methods for accurate estimation of genomic copy number from array-CGH hybridization data have been included in the program. Moreover, the connection to the gene expression analysis package GEPAS allows the use of different facilities for data pre-processing and analysis. A DAS server allows exporting the results to the Ensembl viewer where contextual genomic information can be obtained. The program is freely available at: http://isacgh.bioinfo.cipf.es or within http://www.gepas.org.


Babelomics: advanced functional profiling of transcriptomics, proteomics and genomics experiments.

  • Fátima Al-Shahrour‎ et al.
  • Nucleic acids research‎
  • 2008‎

We present a new version of Babelomics, a complete suite of web tools for the functional profiling of genome scale experiments, with new and improved methods as well as more types of functional definitions. Babelomics includes different flavours of conventional functional enrichment methods as well as more advanced gene set analysis methods that makes it a unique tool among the similar resources available. In addition to the well-known functional definitions (GO, KEGG), Babelomics includes new ones such as Biocarta pathways or text mining-derived functional terms. Regulatory modules implemented include transcriptional control (Transfac, CisRed) and other levels of regulation such as miRNA-mediated interference. Moreover, Babelomics allows for sub-selection of terms in order to test more focused hypothesis. Also gene annotation correspondence tables can be imported, which allows testing with user-defined functional modules. Finally, a tool for the 'de novo' functional annotation of sequences has been included in the system. This allows using yet unannotated organisms in the program. Babelomics has been extensively re-engineered and now it includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. Babelomics is available at http://www.babelomics.org.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: