Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Clinical validation of genetic variants associated with in vitro chemotherapy-related lymphoblastoid cell toxicity.

  • Peter A Fasching‎ et al.
  • Oncotarget‎
  • 2017‎

Hematotoxicity is one of the major side effects of chemotherapy. The aim of this study was to examine the association between single nucleotide polymorphisms (SNPs) and hematotoxicity in breast cancer patients in a subset of patients of the SUCCESS prospective phase III chemotherapy study. All patients (n = 1678) received three cycles of 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) followed by three cycles of docetaxel or docetaxel/gemcitabine, depending on randomization. Germline DNA was genotyped for 246 SNPs selected from a previous genome-wide association study (GWAS) in a panel of lymphoblastoid cell lines, with gemcitabine toxicity as the phenotype. All SNPs were tested for their value in predicting grade 3 or 4 neutropenic or leukopenic events (NLEs). Their prognostic value in relation to overall survival and disease-free survival was also tested. None of the SNPs was found to be predictive for NLEs during treatment with docetaxel/gemcitabine. Two SNPs in and close to the PIGB gene significantly improved the prediction of NLEs after FEC, in addition to the factors of age and body surface area. The top SNP (rs12050587) had an odds ratio of 1.38 per minor allele (95% confidence interval, 1.17 to 1.62). No associations were identified for predicting disease-free or overall survival. Genetic variance in the PIGB gene may play a role in determining interindividual differences in relation to hematotoxicity after FEC chemotherapy.


Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene.

  • Ed Dicks‎ et al.
  • Oncotarget‎
  • 2017‎

We analyzed whole exome sequencing data in germline DNA from 412 high grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas Project and identified 5,517 genes harboring a predicted deleterious germline coding mutation in at least one HGSOC case. Gene-set enrichment analysis showed enrichment for genes involved in DNA repair (p = 1.8×10-3). Twelve DNA repair genes - APEX1, APLF, ATX, EME1, FANCL, FANCM, MAD2L2, PARP2, PARP3, POLN, RAD54L and SMUG1 - were prioritized for targeted sequencing in up to 3,107 HGSOC cases, 1,491 cases of other epithelial ovarian cancer (EOC) subtypes and 3,368 unaffected controls of European origin. We estimated mutation prevalence for each gene and tested for associations with disease risk. Mutations were identified in both cases and controls in all genes except MAD2L2, where we found no evidence of mutations in controls. In FANCM we observed a higher mutation frequency in HGSOC cases compared to controls (29/3,107 cases, 0.96 percent; 13/3,368 controls, 0.38 percent; P=0.008) with little evidence for association with other subtypes (6/1,491, 0.40 percent; P=0.82). The relative risk of HGSOC associated with deleterious FANCM mutations was estimated to be 2.5 (95% CI 1.3 - 5.0; P=0.006). In summary, whole exome sequencing of EOC cases with large-scale replication in case-control studies has identified FANCM as a likely novel susceptibility gene for HGSOC, with mutations associated with a moderate increase in risk. These data may have clinical implications for risk prediction and prevention approaches for high-grade serous ovarian cancer in the future and a significant impact on reducing disease mortality.


Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci.

  • Dylan M Glubb‎ et al.
  • Oncotarget‎
  • 2017‎

We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (p<1×10-5). Larger patient numbers will be needed to convincingly identify any true associations at these loci.


Multiple-level validation identifies PARK2 in the development of lung cancer and chronic obstructive pulmonary disease.

  • SeungBaek Lee‎ et al.
  • Oncotarget‎
  • 2016‎

An important precursor to lung cancer development is chronic obstructive pulmonary disease (COPD), independent of exposure to tobacco smoke. Both diseases are associated with increased host susceptibility, inflammation, and genomic instability. However, validation of the candidate genes and functional confirmation to test shared genetic contribution and cellular mechanisms to the development of lung cancer in patients with COPD remains underexplored. Here, we show that loss of PARK2 (encoding Parkin) increases the expression of proinflammation factors as well as nuclear NF-κB localization, suggesting a role of PARK2 loss in inflammation. Additional exploration showed that PARK2 deficiency promotes genomic instability and cell transformation. This role of PARK2 in inflammation and chromosome instability provides a potential link among Parkin, COPD and lung cancer. A further comprehensive validation of 114 informative single nucleotide polymorphism (SNP) variants of PARK2, in 2,484 cases and controls with well-defined lung cancer and COPD phenotypes, found rs577876, rs6455728 and rs9346917 (p<0.01) to be significantly associated with lung cancer development in people with COPD. Our findings support the evidence that PARK2 might have a tumor suppressor role in the development of COPD and lung cancer.


A targeted genetic association study of epithelial ovarian cancer susceptibility.

  • Madalene Earp‎ et al.
  • Oncotarget‎
  • 2016‎

Genome-wide association studies have identified several common susceptibility alleles for epithelial ovarian cancer (EOC). To further understand EOC susceptibility, we examined previously ungenotyped candidate variants, including uncommon variants and those residing within known susceptibility loci.


Characterization of fusion genes in common and rare epithelial ovarian cancer histologic subtypes.

  • Madalene A Earp‎ et al.
  • Oncotarget‎
  • 2017‎

Gene fusions play a critical role in some cancers and can serve as important clinical targets. In epithelial ovarian cancer (EOC), the contribution of fusions, especially by histological type, is unclear. We therefore screened for recurrent fusions in a histologically diverse panel of 220 EOCs using RNA sequencing. The Pipeline for RNA-Sequencing Data Analysis (PRADA) was used to identify fusions and allow for comparison with The Cancer Genome Atlas (TCGA) tumors. Associations between fusions and clinical prognosis were evaluated using Cox proportional hazards regression models. Nine recurrent fusions, defined as occurring in two or more tumors, were observed. CRHR1-KANSL1 was the most frequently identified fusion, identified in 6 tumors (2.7% of all tumors). This fusion was not associated with survival; other recurrent fusions were too rare to warrant survival analyses. One recurrent in-frame fusion, UBAP1-TGM7, was unique to clear cell (CC) EOC tumors (in 10%, or 2 of 20 CC tumors). We found some evidence that CC tumors harbor more fusions on average than any other EOC histological type, including high-grade serous (HGS) tumors. CC tumors harbored a mean of 7.4 fusions (standard deviation [sd] = 7.4, N = 20), compared to HGS EOC tumors mean of 2.0 fusions (sd = 3.3, N = 141). Few fusion genes were detected in endometrioid tumors (mean = 0.24, sd = 0.74, N = 55) or mucinous tumors (mean = 0.25, sd = 0.5, N = 4) tumors. To conclude, we identify one fusion at 10% frequency in the CC EOC subtype, but find little evidence for common (> 5% frequency) recurrent fusion genes in EOC overall, or in HGS subtype-specific EOC tumors.


Investigation of factors affecting the efficacy of 3C23K, a human monoclonal antibody targeting MISIIR.

  • Sarah E Gill‎ et al.
  • Oncotarget‎
  • 2017‎

MISIIR is a potential target for ovarian cancer (OC) therapy due to its tissue-specific pattern of expression. 3C23K is a novel therapeutic monoclonal anti-MISIIR antibody designed to recruit effector cells and promote cell death through ADCC (antibody dependent cell-mediated cytotoxicity). Our objective was to determine the tolerability and efficacy of 3C23K in OC patient-derived xenografts (PDX) and to identify factors affecting efficacy. Quantitative RT-PCR, immunohistochemistry (IHC), and flow cytometry were used to categorize MISIIR expression in established PDX models derived from primary OC patients. We selected two high expressing models and two low expressing models for in vivo testing. One xenograft model using an MISIIR over-expressing SKOV3ip cell line (Z3) was a positive control. The primary endpoint was change in tumor size. The secondary endpoint was final tumor mass. We observed no statistically significant differences between control and treated animals. The lack of response could be secondary to a number of variables including the lack of known biomarkers of response, the low membrane expression of MISIIR, and a limited ability of 3C23K to induce ADCC in PDX models. Further study is needed to determine the magnitude of ovarian cancer response to 3C23K and also if there is a threshold surface expression to predict response.


Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer.

  • Shalaka S Hampras‎ et al.
  • Oncotarget‎
  • 2016‎

Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer.


HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer.

  • Helen Ross-Adams‎ et al.
  • Oncotarget‎
  • 2016‎

Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: