Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,230 papers

Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

  • Dan-Qing Liu‎ et al.
  • PloS one‎
  • 2008‎

Signal regulate protein alpha (SIRPalpha) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2) integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis.


Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL® platform.

  • Monica M Reinholz‎ et al.
  • BMC medical genomics‎
  • 2010‎

The cDNA-mediated Annealing, extension, Selection and Ligation (DASL) assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panel v1 (1.5K) and 24,526-gene panel (24K) platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+) and 11 HER2-negative (HER2-) paraffin-embedded breast tumors.


Self-contained gene-set analysis of expression data: an evaluation of existing and novel methods.

  • Brooke L Fridley‎ et al.
  • PloS one‎
  • 2010‎

Gene set methods aim to assess the overall evidence of association of a set of genes with a phenotype, such as disease or a quantitative trait. Multiple approaches for gene set analysis of expression data have been proposed. They can be divided into two types: competitive and self-contained. Benefits of self-contained methods include that they can be used for genome-wide, candidate gene, or pathway studies, and have been reported to be more powerful than competitive methods. We therefore investigated ten self-contained methods that can be used for continuous, discrete and time-to-event phenotypes. To assess the power and type I error rate for the various previously proposed and novel approaches, an extensive simulation study was completed in which the scenarios varied according to: number of genes in a gene set, number of genes associated with the phenotype, effect sizes, correlation between expression of genes within a gene set, and the sample size. In addition to the simulated data, the various methods were applied to a pharmacogenomic study of the drug gemcitabine. Simulation results demonstrated that overall Fisher's method and the global model with random effects have the highest power for a wide range of scenarios, while the analysis based on the first principal component and Kolmogorov-Smirnov test tended to have lowest power. The methods investigated here are likely to play an important role in identifying pathways that contribute to complex traits.


MiR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs.

  • Changnian Song‎ et al.
  • PloS one‎
  • 2010‎

Among the hundreds of genes encoding miRNAs in plants reported, much more were predicted by numerous computational methods. However, unlike protein-coding genes defined by start and stop codons, the ends of miRNA molecules do not have characteristics that can be used to define the mature miRNAs exactly, which made computational miRNA prediction methods often cannot predict the accurate location of the mature miRNA in a precursor with nucleotide-level precision. To our knowledge, there haven't been reports about comprehensive strategies determining the precise sequences, especially two termini, of these miRNAs.


A Kallikrein 15 (KLK15) single nucleotide polymorphism located close to a novel exon shows evidence of association with poor ovarian cancer survival.

  • Jyotsna Batra‎ et al.
  • BMC cancer‎
  • 2011‎

KLK15 over-expression is reported to be a significant predictor of reduced progression-free survival and overall survival in ovarian cancer. Our aim was to analyse the KLK15 gene for putative functional single nucleotide polymorphisms (SNPs) and assess the association of these and KLK15 HapMap tag SNPs with ovarian cancer survival.


Evaluation of a new high-dimensional miRNA profiling platform.

  • Julie M Cunningham‎ et al.
  • BMC medical genomics‎
  • 2009‎

MicroRNAs (miRNAs) are a class of approximately 22 nucleotide long, widely expressed RNA molecules that play important regulatory roles in eukaryotes. To investigate miRNA function, it is essential that methods to quantify their expression levels be available.


FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt.

  • Huadong Pei‎ et al.
  • Cancer cell‎
  • 2009‎

Akt is a central regulator of cell growth. Its activity can be negatively regulated by the phosphatase PHLPP that specifically dephosphorylates the hydrophobic motif of Akt (Ser473 in Akt1). However, how PHLPP is targeted to Akt is not clear. Here we show that FKBP51 (FK506-binding protein 51) acts as a scaffolding protein for Akt and PHLPP and promotes dephosphorylation of Akt. Furthermore, FKBP51 is downregulated in pancreatic cancer tissue samples and several cancer cell lines. Decreased FKBP51 expression in cancer cells results in hyperphosphorylation of Akt and decreased cell death following genotoxic stress. Overall, our findings identify FKBP51 as a negative regulator of the Akt pathway, with potentially important implications for cancer etiology and response to chemotherapy.


Evaluation of clustering and genotype distribution for replication in genome wide association studies: the age-related eye disease study.

  • Albert O Edwards‎ et al.
  • PloS one‎
  • 2008‎

Genome-wide association studies (GWASs) assess correlation between traits and DNA sequence variation using large numbers of genetic variants such as single nucleotide polymorphisms (SNPs) distributed across the genome. A GWAS produces many trait-SNP associations with low p-values, but few are replicated in subsequent studies. We sought to determine if characteristics of the genomic loci associated with a trait could be used to identify initial associations with a higher chance of replication in a second cohort. Data from the age-related eye disease study (AREDS) of 100,000 SNPs on 395 subjects with and 198 without age-related macular degeneration (AMD) were employed. Loci highly associated with AMD were characterized based on the distribution of genotypes, level of significance, and clustering of adjacent SNPs also associated with AMD suggesting linkage disequilibrium or multiple effects. Forty nine loci were highly associated with AMD, including 3 loci (CFH, C2/BF, LOC387715/HTRA1) already known to contain important genetic risks for AMD. One additional locus (C3) reported during the course of this study was identified and replicated in an additional study group. Tag-SNPs and haplotypes for each locus were evaluated for association with AMD in additional cohorts to account for population differences between discovery and replication subjects, but no additional clearly significant associations were identified. Relying on a significant genotype tests using a log-additive model would have excluded 57% of the non-replicated and none of the replicated loci, while use of other SNP features and clustering might have missed true associations.


Assessment of genotype imputation methods.

  • Joanna M Biernacka‎ et al.
  • BMC proceedings‎
  • 2009‎

Several methods have been proposed to impute genotypes at untyped markers using observed genotypes and genetic data from a reference panel. We used the Genetic Analysis Workshop 16 rheumatoid arthritis case-control dataset to compare the performance of four of these imputation methods: IMPUTE, MACH, PLINK, and fastPHASE. We compared the methods' imputation error rates and performance of association tests using the imputed data, in the context of imputing completely untyped markers as well as imputing missing genotypes to combine two datasets genotyped at different sets of markers. As expected, all methods performed better for single-nucleotide polymorphisms (SNPs) in high linkage disequilibrium with genotyped SNPs. However, MACH and IMPUTE generated lower imputation error rates than fastPHASE and PLINK. Association tests based on allele "dosage" from MACH and tests based on the posterior probabilities from IMPUTE provided results closest to those based on complete data. However, in both situations, none of the imputation-based tests provide the same level of evidence of association as the complete data at SNPs strongly associated with disease.


Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women.

  • Matthew M Roforth‎ et al.
  • Bone‎
  • 2015‎

Age-related bone loss in humans is associated with a decrease in bone formation relative to bone resorption, although the mechanisms for this impairment in bone formation with aging are not well understood. It is known that the precursors for the bone-forming osteoblasts reside in the mesenchymal cell population in bone marrow. Thus, in an effort to identify relevant genetic pathways that are altered with aging, we examined the gene expression and DNA methylation patterns from a highly enriched bone marrow mesenchymal cell population from young (mean age, 28.7 years) versus old (mean age, 73.3 years) women. Bone marrow mononuclear cells from these women were depleted of hematopoietic lineage (lin) and endothelial cells using a combination of magnetic- and fluorescence-activated cell sorting, yielding a previously characterized mesenchymal cell population (lin-/CD34-/CD31- cells) that is capable of osteoblast differentiation. Whole transcriptome RNA sequencing (RNAseq) of freshly isolated cells (without in vitro culture) identified 279 differentially expressed genes (p < 0.05, false discovery rate [q]< 0.10) between the young and old subjects. Pathway analysis revealed statistically significant (all p < 0.05) alterations in protein synthesis and degradation pathways, as well as mTOR, gap junction, calcium, melatonin and NFAT signaling pathways. Further, Reduced Representational Bisulphite sequencing (RRBS DNA methylation sequencing) revealed significant differences in methylation between the young and old subjects surrounding the promoters of 1528 target genes that also exhibited significant differences in gene expression by RNAseq. In summary, these studies provide novel insights into potential pathways affected by aging in a highly enriched human mesenchymal cell population analyzed without the confounding effects of in vitro culture. Specifically, our finding of alterations in several genes and pathways leading to impaired protein synthesis and turnover with aging in bone marrow mesenchymal cells points to the need for further studies examining how these changes, as well as the other alterations with aging that we identified, may contribute to the age-related impairment in osteoblast formation and/or function.


MicroRNA related polymorphisms and breast cancer risk.

  • Sofia Khan‎ et al.
  • PloS one‎
  • 2014‎

Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.


No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer.

  • Ovarian Cancer Association Consortium, Breast Cancer Association Consortium, and Consortium of Modifiers of BRCA1 and BRCA2‎ et al.
  • Gynecologic oncology‎
  • 2016‎

Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370.


Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2.

  • Chen Wang‎ et al.
  • PloS one‎
  • 2015‎

A better understanding of the effects of human adipocytes on breast cancer cells may lead to the development of new treatment strategies. We explored the effects of adipocytes on the migration and invasion of breast cancer cells both in vitro and in vivo.


Analysis of the protein-protein interaction networks of differentially expressed genes in pulmonary embolism.

  • Hao Wang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The aim of the present study was to explore the function and interaction of differentially expressed genes (DEGs) in pulmonary embolism (PE). The gene expression profile GSE13535, was downloaded from the Gene Expression Omnibus database. The DEGs 2 and 18 h post‑PE initiation were identified using the affy package in R software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the DEGs were analyzed using Database for Annotation Visualization and Integrated Discovery (DAVID) online analytical tools. In addition, protein‑protein interaction (PPI) networks of the DEGs were constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins. The PPI network at 18 h was modularized using Clusterone, and a functional enrichment analysis of the DEGs in the top three modules was performed with DAVID. Overall, 80 and 346 DEGs were identified 2 and 18 h after PE initiation, respectively. The KEGG pathways, including chemokine signaling and toll‑like receptor signaling, were shown to be significantly enriched. The five highest degree nodes in the PPI networks at 2 or 18 h were screened. The module analysis of the PPI network at 18 h revealed 11 hub nodes. A Gene Ontology terms analysis demonstrated that the DEGs in the top three modules were associated with the inflammatory, defense and immune responses. The results of the present study suggest that the DEGs identified, including chemokine‑related genes TFPI2 and TNF, may be potential target genes for the treatment of PE. The chemokine signaling pathway, inflammatory response and immune response were explored, and it may be suggested that these pathways have important roles in PE.


Smoking cessation in Asians: focus on varenicline.

  • Dan Xiao‎ et al.
  • Patient preference and adherence‎
  • 2015‎

Smoking is a modifiable risk factor for morbidity and mortality caused by cancer, cardiovascular diseases, respiratory diseases, and many other diseases. Given the large population size and high prevalence of smoking in Asia, successful smoking cessation could potentially prevent the large number of premature deaths in Asians. However, most dependent smokers cannot successfully quit smoking due to nicotine addiction, and they need professional help and smoking cessation therapies. Varenicline is a highly selective partial agonist for the nicotinic acetylcholine receptor α4β2 subtype, which is believed to be responsible for mediating the reinforcing properties of nicotine. This article is a narrative review, which summarizes the smoking cessation efficacy, side effects, and cost utilities of varenicline in Asians. From this review, we conclude that varenicline is an effective medication that could assist smoking cessation in the Asian populations. The adverse events of varenicline are tolerable, and the most common events were nausea and abnormal dreams. Both the efficacy and tolerance of varenicline in Asians are similar to that in Western populations. Considering the cost utilities, varenicline should be recommended for use in smoking cessation and be covered by medical insurance in most Asian countries.


Identification of novel genetic markers of breast cancer survival.

  • Qi Guo‎ et al.
  • Journal of the National Cancer Institute‎
  • 2015‎

Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer-specific survival.


UXT potentiates angiogenesis by attenuating Notch signaling.

  • Yi Zhou‎ et al.
  • Development (Cambridge, England)‎
  • 2015‎

Angiogenesis is spatially and temporally orchestrated by a myriad of signaling pathways, including the Notch signaling pathway. Here, we identified UXT as an evolutionarily conserved and developmentally expressed protein, indispensable for intersegmental vessel (ISV) formation in zebrafish. Deficiency of UXT in zebrafish embryos results in shorter ISVs, loss of tip cell behavior, and impairment of endothelial cell migration and division. Significantly, UXT attenuates the expression of the Notch-responsive genes in vitro and in vivo. Mechanistically, UXT binds to the promoters of the Notch signaling target genes and specifically interacts with the transactivation region domain of the Notch intracellular domain (NICD), impairing the interaction between NICD and the transcription factor RBP-Jκ endogenously. This prevents RBP-Jκ/CSL from activation and thus inhibits the consequent gene inductions. Furthermore, blockade of Notch signaling rescues the angiogenesis defect caused by UXT knockdown both in vitro and in vivo. Taken together, the data presented in this study characterize UXT as a novel repressor of Notch signaling, shedding new light on the molecular regulation of angiogenesis.


Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions.

  • Jennifer H Barrett‎ et al.
  • International journal of cancer‎
  • 2015‎

At least 17 genomic regions are established as harboring melanoma susceptibility variants, in most instances with genome-wide levels of significance and replication in independent samples. Based on genome-wide single nucleotide polymorphism (SNP) data augmented by imputation to the 1,000 Genomes reference panel, we have fine mapped these regions in over 5,000 individuals with melanoma (mainly from the GenoMEL consortium) and over 7,000 ethnically matched controls. A penalized regression approach was used to discover those SNP markers that most parsimoniously explain the observed association in each genomic region. For the majority of the regions, the signal is best explained by a single SNP, which sometimes, as in the tyrosinase region, is a known functional variant. However in five regions the explanation is more complex. At the CDKN2A locus, for example, there is strong evidence that not only multiple SNPs but also multiple genes are involved. Our results illustrate the variability in the biology underlying genome-wide susceptibility loci and make steps toward accounting for some of the "missing heritability."


Lin28a protects against hypoxia/reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat conditions.

  • Mingming Zhang‎ et al.
  • PloS one‎
  • 2014‎

The aim of the present study was to investigate the role of Lin28a in protecting against hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis under high glucose/high fat (HG/HF) conditions.


A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer.

  • Hans Kristian Moen Vollan‎ et al.
  • Molecular oncology‎
  • 2015‎

Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER-) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p < 0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PFS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER- disease. None of the expression-based predictors were prognostic in the ER- subset. We found that a model including CAAI and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAI. Inclusion of CAAI in the clinical prognostication tool PREDICT significantly improved its performance. CAAI positive ovarian cancers (52%) also had worse prognosis: HRs of 1.3 (95%CI, 1.1-1.7) for PFS and 1.3 (95%CI, 1.1-1.6) for OS. This study validates CAAI as an independent predictor of survival in both ER+ and ER- breast cancer and reveals a significant prognostic value for CAAI in high-grade serous ovarian cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: