Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Cholecystokinin activation of central satiety centers changes seasonally in a mammalian hibernator.

  • Jessica P Otis‎ et al.
  • General and comparative endocrinology‎
  • 2011‎

Hibernators that rely on lipids during winter exhibit profound changes in food intake over the annual cycle. The mechanisms that regulate appetite changes in seasonal hibernators remain unclear, but likely consist of complex interactions between gut hormones, adipokines, and central processing centers. We hypothesized that seasonal changes in the sensitivity of neurons in the nucleus tractus solitarius (NTS) to the gut hormone cholecystokinin (CCK) may contribute to appetite regulation in ground squirrels. Spring (SPR), late summer (SUM), and winter euthermic hibernating (HIB) 13-lined ground squirrels (Ictidomys tridecemlineatus) were treated with intraperitoneal CCK (100 μg/kg) or vehicle (CON) for 3h and Fos expression in the NTS was quantified. In CON squirrels, numbers of Fos-positive neurons in HIB were low compared to SPR and SUM. CCK treatment increased Fos-positive neurons in the NTS at the levels of the area postrema (AP) and pre AP during all seasons and at the level of the rostral AP in HIB squirrels. The highest absolute levels of Fos-positive neurons were found in SPR CCK squirrels, but the highest relative increase from CON was found in HIB CCK squirrels. Fold-changes in Fos-positive neurons in SUM were intermediate between SPR and HIB. Thus, CCK sensitivity falls from SPR to SUM suggesting that seasonal changes in sensitivity of NTS neurons to vagally-derived CCK may influence appetite in the active phase of the annual cycle in hibernating squirrels. Enhanced sensitivity to CCK signaling in NTS neurons of hibernators indicates that changes in gut-brain signaling may contribute to seasonal changes in food intake during the annual cycle.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: