Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 174 papers

Prevalence of pfhrp2 and/or pfhrp3 Gene Deletion in Plasmodium falciparum Population in Eight Highly Endemic States in India.

  • Praveen Kumar Bharti‎ et al.
  • PloS one‎
  • 2016‎

Plasmodium falciparum encoded histidine rich protein (HRP2) based malaria rapid diagnostic tests (RDTs) are used in India. Deletion of pfhrp2 and pfhrp3 genes contributes to false negative test results, and large numbers of such deletions have been reported from South America, highlighting the importance of surveillance to detect such deletions.


Access to free or low-cost tuberculosis treatment for migrants and refugees along the Thailand-Myanmar border in Tak province, Thailand.

  • Naomi Tschirhart‎ et al.
  • International journal for equity in health‎
  • 2016‎

In Tak province, Thailand migrants and refugees from Myanmar navigate a pluralistic healthcare system to seek Tuberculosis (TB) care from a variety of government and non-governmental providers. This multi-methods qualitative study examined access to TB, TB/HIV and multidrug-resistant tuberculosis (MDR-TB) treatment with an emphasis on barriers to care and enabling factors.


Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand.

  • Sarah Auburn‎ et al.
  • The Journal of infectious diseases‎
  • 2016‎

In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms.


Neutralizing Antibodies against Plasmodium falciparum Associated with Successful Cure after Drug Therapy.

  • Yun Shan Goh‎ et al.
  • PloS one‎
  • 2016‎

An effective antibody response can assist drug treatment to contribute to better parasite clearance in malaria patients. To examine this, sera were obtained from two groups of adult patients with acute falciparum malaria, prior to drug treatment: patients who (1) have subsequent recrudescent infection, or (2) were cured by Day 28 following treatment. Using a Plasmodium falciparum antigen library, we examined the antibody specificities in these sera. While the antibody repertoire of both sera groups was extremely broad and varied, there was a differential antibody profile between the two groups of sera. The proportion of cured patients with antibodies against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 was higher than the proportion of patients with recrudescent infection. The presence of these antibodies was associated with higher odds of treatment cure. Sera containing all six antibodies impaired the invasion of P. falciparum clinical isolates into erythrocytes. These results suggest that antibodies specific against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 in P. falciparum infections could assist anti-malarial drug treatment and contribute to the resolution of the malarial infection.


Limited Polymorphism of the Kelch Propeller Domain in Plasmodium malariae and P. ovale Isolates from Thailand.

  • Supatchara Nakeesathit‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2016‎

Artemisinin resistance in Plasmodium falciparum, the agent of severe malaria, is currently a major obstacle to malaria control in Southeast Asia. A gene named "kelch13" has been associated with artemisinin resistance in P. falciparum The orthologue of the kelch gene in P. vivax was identified and a small number of mutations were found in previous studies. The kelch orthologues in the other two human malaria parasites, P. malariae and P. ovale, have not yet been studied. Therefore, in this study, the orthologous kelch genes of P. malariae, P. ovale wallikeri, and P. ovale curtisi were isolated and analyzed for the first time. The homologies of the kelch genes of P. malariae and P. ovale were 84.8% and 82.7%, respectively, compared to the gene in P. falciparum kelch polymorphisms were studied in 13 P. malariae and 5 P. ovale isolates from Thailand. There were 2 nonsynonymous mutations found in these samples. One mutation was P533L, which was found in 1 of 13 P. malariae isolates, and the other was K137R, found in 1 isolate of P. ovale wallikeri (n = 4). This result needs to be considered in the context of widespread artemisinin used within the region; their functional consequences for artemisinin sensitivity in P. malariae and P. ovale will need to be elucidated.


Genetic architecture of artemisinin-resistant Plasmodium falciparum.

  • Olivo Miotto‎ et al.
  • Nature genetics‎
  • 2015‎

We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population.


A Basis for Rapid Clearance of Circulating Ring-Stage Malaria Parasites by the Spiroindolone KAE609.

  • Rou Zhang‎ et al.
  • The Journal of infectious diseases‎
  • 2016‎

Recent clinical trials revealed a surprisingly rapid clearance of red blood cells (RBCs) infected with malaria parasites by the spiroindolone KAE609. Here, we show that ring-stage parasite-infected RBCs exposed to KAE609 become spherical and rigid, probably through osmotic dysregulation consequent to the disruption of the parasite's sodium efflux pump (adenosine triphosphate 4). We also show that this peculiar drug effect is likely to cause accelerated splenic clearance of the rheologically impaired Plasmodium vivax- and Plasmodium falciparum-infected RBCs.


PET-PCR method for the molecular detection of malaria parasites in a national malaria surveillance study in Haiti, 2011.

  • Naomi W Lucchi‎ et al.
  • Malaria journal‎
  • 2014‎

Recently, a real-time PCR assay known as photo-induced electron transfer (PET)-PCR which relies on self-quenching primers for the detection of Plasmodium spp. and Plasmodium falciparum was described. PET-PCR assay was found to be robust, and easier to use when compared to currently available real-time PCR methods. The potential of PET-PCR for molecular detection of malaria parasites in a nationwide malaria community survey in Haiti was investigated.


Detection of Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax using loop-mediated isothermal amplification (LAMP) in a co-endemic area in Malaysia.

  • Kim A Piera‎ et al.
  • Malaria journal‎
  • 2017‎

Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection.


Validation of the quantitative point-of-care CareStart biosensor for assessment of G6PD activity in venous blood.

  • Germana Bancone‎ et al.
  • PloS one‎
  • 2018‎

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the human population affecting an estimated 8% of the world population, especially those living in areas of past and present malaria endemicity. Decreased G6PD enzymatic activity is associated with drug-induced hemolysis and increased risk of severe neonatal hyperbilirubinemia leading to brain damage. The G6PD gene is on the X chromosome therefore mutations cause enzymatic deficiency in hemizygote males and homozygote females while the majority of heterozygous females have an intermediate activity (between 30-80% of normal) with a large distribution into the range of deficiency and normality. Current G6PD qualitative tests are unable to diagnose G6PD intermediate activities which could hinder wide use of 8-aminoquinolines for Plasmodium vivax elimination. The aim of the study was to assess the diagnostic performances of the new Carestart G6PD quantitative biosensor.


Dense genomic sampling identifies highways of pneumococcal recombination.

  • Claire Chewapreecha‎ et al.
  • Nature genetics‎
  • 2014‎

Evasion of clinical interventions by Streptococcus pneumoniae occurs through selection of non-susceptible genomic variants. We report whole-genome sequencing of 3,085 pneumococcal carriage isolates from a 2.4-km(2) refugee camp. This sequencing provides unprecedented resolution of the process of recombination and its impact on population evolution. Genomic recombination hotspots show remarkable consistency between lineages, indicating common selective pressures acting at certain loci, particularly those associated with antibiotic resistance. Temporal changes in antibiotic consumption are reflected in changes in recombination trends, demonstrating rapid spread of resistance when selective pressure is high. The highest frequencies of receipt and donation of recombined DNA fragments were observed in non-encapsulated lineages, implying that this largely overlooked pneumococcal group, which is beyond the reach of current vaccines, may have a major role in genetic exchange and the adaptation of the species as a whole. These findings advance understanding of pneumococcal population dynamics and provide information for the design of future intervention strategies.


A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains.

  • Mark D Preston‎ et al.
  • Nature communications‎
  • 2014‎

Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (~92%) and easily adapted to aid case management in the field and survey parasite migration worldwide.


Historical shifts in Brazilian P. falciparum population structure and drug resistance alleles.

  • Sean M Griffing‎ et al.
  • PloS one‎
  • 2013‎

Previous work suggests that Brazilian Plasmodium falciparum has limited genetic diversity and a history of bottlenecks, multiple reintroductions due to human migration, and clonal expansions. We hypothesized that Brazilian P. falciparum would exhibit clonal structure. We examined isolates collected across two decades from Amapá, Rondônia, and Pará state (n = 190). By examining more microsatellites markers on more chromosomes than previous studies, we hoped to define the extent of low diversity, linkage disequilibrium, bottlenecks, population structure, and parasite migration within Brazil. We used retrospective genotyping of samples from the 1980s and 1990s to explore the population genetics of SP resistant dhfr and dhps alleles. We tested an existing hypothesis that the triple mutant dhfr mutations 50R/51I/108N and 51I/108N/164L developed in southern Amazon from a single origin of common or similar parasites. We found that Brazilian P. falciparum had limited genetic diversity and isolation by distance was rejected, which suggests it underwent bottlenecks followed by migration between sites. Unlike Peru, there appeared to be gene flow across the Brazilian Amazon basin. We were unable to divide parasite populations by clonal lineages and pairwise FST were common. Most parasite diversity was found within sites in the Brazilian Amazon, according to AMOVA. Our results challenge the hypothesis that triple mutant alleles arose from a single lineage in the Southern Amazon. SP resistance, at both the double and triple mutant stages, developed twice and potentially in different regions of the Brazilian Amazon. We would have required samples from before the 1980s to describe how SP resistance spread across the basin or describe the complex internal migration of Brazilian parasites after the colonization efforts of past decades. The Brazilian Amazon basin may have sufficient internal migration for drug resistance reported in any particular region to rapidly spread to other parts of basin under similar drug pressure.


Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance.

  • Maria Isabel Veiga‎ et al.
  • PloS one‎
  • 2011‎

Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions.


A new single-step PCR assay for the detection of the zoonotic malaria parasite Plasmodium knowlesi.

  • Naomi W Lucchi‎ et al.
  • PloS one‎
  • 2012‎

Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection.


Polymorphisms in genes of interleukin 12 and its receptors and their association with protection against severe malarial anaemia in children in western Kenya.

  • Lyna Zhang‎ et al.
  • Malaria journal‎
  • 2010‎

Malarial anaemia is characterized by destruction of malaria infected red blood cells and suppression of erythropoiesis. Interleukin 12 (IL12) significantly boosts erythropoietic responses in murine models of malarial anaemia and decreased IL12 levels are associated with severe malarial anaemia (SMA) in children. Based on the biological relevance of IL12 in malaria anaemia, the relationship between genetic polymorphisms of IL12 and its receptors and SMA was examined.


Evaluation of three PCR-based diagnostic assays for detecting mixed Plasmodium infection.

  • Tonya Mixson-Hayden‎ et al.
  • BMC research notes‎
  • 2010‎

One of the most commonly used molecular test for malaria diagnosis is the polymerase chain reaction (PCR)-based amplification of the 18S ribosomal DNA (rDNA) gene. Published diagnostic assays based on the 18S gene include the "gold standard" nested assay, semi-nested multiplex assay, and one tube multiplex assay. To our knowledge, no one has reported whether the two multiplex methods are better at detecting mixed Plasmodium infections compared to the nested assay using known quantities of DNA in experimentally mixed cocktails.


HIV impairs opsonic phagocytic clearance of pregnancy-associated malaria parasites.

  • Jessica Keen‎ et al.
  • PLoS medicine‎
  • 2007‎

Primigravid (PG) women are at risk for pregnancy-associated malaria (PAM). Multigravid (MG) women acquire protection against PAM; however, HIV infection impairs this protective response. Protection against PAM is associated with the production of IgG specific for variant surface antigens (VSA-PAM) expressed by chondroitin sulfate A (CSA)-adhering parasitized erythrocytes (PEs). We hypothesized that VSA-PAM-specific IgG confers protection by promoting opsonic phagocytosis of PAM isolates and that HIV infection impairs this response.


Cytochemical flow analysis of intracellular G6PD and aggregate analysis of mosaic G6PD expression.

  • Michael Kalnoky‎ et al.
  • European journal of haematology‎
  • 2018‎

Medicines that exert oxidative pressure on red blood cells (RBC) can cause severe hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Due to X-chromosome inactivation, females heterozygous for G6PD with 1 allele encoding a G6PD-deficient protein and the other a normal protein produce 2 RBC populations each expressing exclusively 1 allele. The G6PD mosaic is not captured with routine G6PD tests.


Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis.

  • Richard M Hoglund‎ et al.
  • PLoS medicine‎
  • 2017‎

Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: