Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 148 papers

Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity.

  • Marina Cella‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Natural killer (NK) cells express multiple activating receptors that initiate signaling cascades through DAP10- or immunoreceptor tyrosine-based activation motif-containing adapters, including DAP12 and FcRgamma. Among downstream signaling mediators, the guanine nucleotide exchange factor Vav1 carries out a key role in activation. However, whether Vav1 regulates only some or all NK cell-activating pathways is matter of debate. It is also possible that two other Vav family molecules, Vav2 and Vav3, are involved in NK cell activation. Here, we examine the relative contribution of each of these exchange factors to NK cell-mediated cytotoxicity using mice lacking one, two, or all three Vav proteins. We found that Vav1 deficiency is sufficient to disrupt DAP10-mediated cytotoxicity, whereas lack of Vav2 and Vav3 profoundly impairs FcRgamma- and DAP12-mediated cytotoxicity. Our results provide evidence that these three Vav proteins function specifically in distinct pathways that trigger NK cell cytotoxicity.


Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant.

  • M Paula Longhi‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

Relative to several other toll-like receptor (TLR) agonists, we found polyinosinic:polycytidylic acid (poly IC) to be the most effective adjuvant for Th1 CD4(+) T cell responses to a dendritic cell (DC)-targeted HIV gag protein vaccine in mice. To identify mechanisms for adjuvant action in the intact animal and the polyclonal T cell repertoire, we found poly IC to be the most effective inducer of type I interferon (IFN), which was produced by DEC-205(+) DCs, monocytes, and stromal cells. Antibody blocking or deletion of type I IFN receptor showed that IFN was essential for DC maturation and development of CD4(+) immunity. The IFN-AR receptor was directly required for DCs to respond to poly IC. STAT 1 was also essential, in keeping with the type I IFN requirement, but not type II IFN or IL-12 p40. Induction of type I IFN was mda5 dependent, but DCs additionally used TLR3. In bone marrow chimeras, radioresistant and, likely, nonhematopoietic cells were the main source of IFN, but mda5 was required in both marrow-derived and radioresistant host cells for adaptive responses. Therefore, the adjuvant action of poly IC requires a widespread innate type I IFN response that directly links antigen presentation by DCs to adaptive immunity.


Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis.

  • Masako Kohyama‎ et al.
  • Nature‎
  • 2009‎

Tissue macrophages comprise a heterogeneous group of cell types differing in location, surface markers and function. Red pulp macrophages are a distinct splenic subset involved in removing senescent red blood cells. Transcription factors such as PU.1 (also known as Sfpi1) and C/EBPalpha (Cebpa) have general roles in myelomonocytic development, but the transcriptional basis for producing tissue macrophage subsets remains unknown. Here we show that Spi-C (encoded by Spic), a PU.1-related transcription factor, selectively controls the development of red pulp macrophages. Spi-C is highly expressed in red pulp macrophages, but not monocytes, dendritic cells or other tissue macrophages. Spic(-/-) mice have a cell-autonomous defect in the development of red pulp macrophages that is corrected by retroviral Spi-C expression in bone marrow cells, but have normal monocyte and other macrophage subsets. Red pulp macrophages highly express genes involved in capturing circulating haemoglobin and in iron regulation. Spic(-/-) mice show normal trapping of red blood cells in the spleen, but fail to phagocytose these red blood cells efficiently, and develop an iron overload localized selectively to splenic red pulp. Thus, Spi-C controls development of red pulp macrophages required for red blood cell recycling and iron homeostasis.


TREM-2 promotes macrophage survival and lung disease after respiratory viral infection.

  • Kangyun Wu‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Viral infections and type 2 immune responses are thought to be critical for the development of chronic respiratory disease, but the link between these events needs to be better defined. Here, we study a mouse model in which infection with a mouse parainfluenza virus known as Sendai virus (SeV) leads to long-term activation of innate immune cells that drive IL-13-dependent lung disease. We find that chronic postviral disease (signified by formation of excess airway mucus and accumulation of M2-differentiating lung macrophages) requires macrophage expression of triggering receptor expressed on myeloid cells-2 (TREM-2). Analysis of mechanism shows that viral replication increases lung macrophage levels of intracellular and cell surface TREM-2, and this action prevents macrophage apoptosis that would otherwise occur during the acute illness (5-12 d after inoculation). However, the largest increases in TREM-2 levels are found as the soluble form (sTREM-2) long after clearance of infection (49 d after inoculation). At this time, IL-13 and the adapter protein DAP12 promote TREM-2 cleavage to sTREM-2 that is unexpectedly active in preventing macrophage apoptosis. The results thereby define an unprecedented mechanism for a feed-forward expansion of lung macrophages (with IL-13 production and consequent M2 differentiation) that further explains how acute infection leads to chronic inflammatory disease.


Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets.

  • Michelle L Robinette‎ et al.
  • Nature immunology‎
  • 2015‎

The recognized diversity of innate lymphoid cells (ILCs) is rapidly expanding. Three ILC classes have emerged, ILC1, ILC2 and ILC3, with ILC1 and ILC3 including several subsets. The classification of some subsets is unclear, and it remains controversial whether natural killer (NK) cells and ILC1 cells are distinct cell types. To address these issues, we analyzed gene expression in ILCs and NK cells from mouse small intestine, spleen and liver, as part of the Immunological Genome Project. The results showed unique gene-expression patterns for some ILCs and overlapping patterns for ILC1 cells and NK cells, whereas other ILC subsets remained indistinguishable. We identified a transcriptional program shared by small intestine ILCs and a core ILC signature. We revealed and discuss transcripts that suggest previously unknown functions and developmental paths for ILCs.


Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation.

  • Chih-Chung Lin‎ et al.
  • Nature communications‎
  • 2014‎

TH1 and TH17 cells mediate neuroinflammation in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Pathogenic TH cells in EAE must produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). TH cell pathogenicity in EAE is also regulated by cell-intrinsic production of the immunosuppressive cytokine interleukin 10 (IL-10). Here we demonstrate that mice deficient for the basic helix-loop-helix (bHLH) transcription factor Bhlhe40 (Bhlhe40(-/-)) are resistant to the induction of EAE. Bhlhe40 is required in vivo in a T cell-intrinsic manner, where it positively regulates the production of GM-CSF and negatively regulates the production of IL-10. In vitro, GM-CSF secretion is selectively abrogated in polarized Bhlhe40(-/-) TH1 and TH17 cells, and these cells show increased production of IL-10. Blockade of IL-10 receptor in Bhlhe40(-/-) mice renders them susceptible to EAE. These findings identify Bhlhe40 as a critical regulator of autoreactive T-cell pathogenicity.


Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2.

  • Jason D Ulrich‎ et al.
  • Molecular neurodegeneration‎
  • 2014‎

Recent genome-wide association studies linked variants in TREM2 to a strong increase in the odds of developing Alzheimer's disease. The mechanism by which TREM2 influences the susceptibility to Alzheimer's disease is currently unknown. TREM2 is expressed by microglia and is thought to regulate phagocytic and inflammatory microglial responses to brain pathology. Given that a single allele of variant TREM2, likely resulting in a loss of function, conferred an increased risk of developing Alzheimer's disease, we tested whether loss of one functional trem2 allele would affect Aβ plaque deposition or the microglial response to Aβ pathology in APPPS1-21 mice.


Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation.

  • Stanley Ching-Cheng Huang‎ et al.
  • Immunity‎
  • 2016‎

Macrophage activation status is intrinsically linked to metabolic remodeling. Macrophages stimulated by interleukin 4 (IL-4) to become alternatively (or, M2) activated increase fatty acid oxidation and oxidative phosphorylation; these metabolic changes are critical for M2 activation. Enhanced glucose utilization is also characteristic of the M2 metabolic signature. Here, we found that increased glucose utilization is essential for M2 activation. Increased glucose metabolism in IL-4-stimulated macrophages required the activation of the mTORC2 pathway, and loss of mTORC2 in macrophages suppressed tumor growth and decreased immunity to a parasitic nematode. Macrophage colony stimulating factor (M-CSF) was implicated as a contributing upstream activator of mTORC2 in a pathway that involved PI3K and AKT. mTORC2 operated in parallel with the IL-4Rα-Stat6 pathway to facilitate increased glycolysis during M2 activation via the induction of the transcription factor IRF4. IRF4 expression required both mTORC2 and Stat6 pathways, providing an underlying mechanism to explain how glucose utilization is increased to support M2 activation.


Role of TREM1-DAP12 in renal inflammation during obstructive nephropathy.

  • Alessandra Tammaro‎ et al.
  • PloS one‎
  • 2013‎

Tubulo-interstitial damage is a common finding in the chronically diseased kidney and is characterized by ongoing inflammation and fibrosis leading to renal dysfunction and end-stage renal disease. Upon kidney injury, endogenous ligands can be released which are recognized by innate immune sensors to alarm innate immune system. A new family of innate sensors is the family of TREM (triggering receptor expressed on myeloid cell). TREM1 is an activating receptor and requires association with transmembrane adapter molecule DAP12 (DNAX-associated protein 12) for cell signaling. TREM1-DAP12 pathway has a cross-talk with intracellular signaling pathways of several Toll-like receptors (TLRs) and is able to amplify TLR signaling and thereby contributes to the magnitude of inflammation. So far, several studies have shown that TLRs play a role in obstructive nephropathy but the contribution of TREM1-DAP12 herein is unknown. Therefore, we studied TREM1 expression in human and murine progressive renal diseases and further investigated the role for TREM1-DAP12 by subjecting wild-type (WT), TREM1/3 double KO and DAP12 KO mice to murine unilateral ureter obstruction (UUO) model. In patients with hydronephrosis, TREM1 positive cells were observed in renal tissue. We showed that in kidneys from WT mice, DAP12 mRNA and TREM1 mRNA and protein levels were elevated upon UUO. Compared to WT mice, DAP12 KO mice displayed less renal MCP-1, KC and TGF-β1 levels and less influx of macrophages during progression of UUO, whereas TREM1/3 double KO mice displayed less renal MCP-1 level. Renal fibrosis was comparable in WT, TREM1/3 double KO and DAP12 KO mice. We conclude that DAP12, partly through TREM1/3, is involved in renal inflammation during progression of UUO.


Inflammatory monocytes and NK cells play a crucial role in DNAM-1-dependent control of cytomegalovirus infection.

  • Tihana Lenac Rovis‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

The poliovirus receptor (PVR) is a ubiquitously expressed glycoprotein involved in cellular adhesion and immune response. It engages the activating receptor DNAX accessory molecule (DNAM)-1, the inhibitory receptor TIGIT, and the CD96 receptor with both activating and inhibitory functions. Human cytomegalovirus (HCMV) down-regulates PVR expression, but the significance of this viral function in vivo remains unknown. Here, we demonstrate that mouse CMV (MCMV) also down-regulates the surface PVR. The m20.1 protein of MCMV retains PVR in the endoplasmic reticulum and promotes its degradation. A MCMV mutant lacking the PVR inhibitor was attenuated in normal mice but not in mice lacking DNAM-1. This attenuation was partially reversed by NK cell depletion, whereas the simultaneous depletion of mononuclear phagocytes abolished the virus control. This effect was associated with the increased expression of DNAM-1, whereas TIGIT and CD96 were absent on these cells. An increased level of proinflammatory cytokines in sera of mice infected with the virus lacking the m20.1 and an increased production of iNOS by inflammatory monocytes was observed. Blocking of CCL2 or the inhibition of iNOS significantly increased titer of the virus lacking m20.1. In this study, we have demonstrated that inflammatory monocytes, together with NK cells, are essential in the early control of CMV through the DNAM-1-PVR pathway.


DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis.

  • Isaiah R Turnbull‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

DAP12 (KARAP) is a transmembrane signaling adaptor for a family of innate immunoreceptors that have been shown to activate granulocytes and monocytes/macrophages, amplifying production of inflammatory cytokines. Contrasting with these data, recent studies suggest that DAP12 signaling has an inhibitory role in the macrophage response to microbial products (Hamerman, J.A., N.K. Tchao, C.A. Lowell, and L.L. Lanier. 2005. Nat. Immunol. 6:579-586). To determine the in vivo role for DAP12 signaling in inflammation, we measured the response of wild-type (WT) and DAP12-/- mice to septic shock. We show that DAP12-/- mice have improved survival from both endotoxemia and cecal ligation and puncture-induced septic shock. As compared with WT mice, DAP12-/- mice have decreased plasma cytokine levels and a decreased acute phase response during sepsis, but no defect in the recruitment of cells or bacterial control. In cells isolated after sepsis and stimulated ex vivo, DAP12 signaling augments lipopolysaccharide-mediated cytokine production. These data demonstrate that, during sepsis, DAP12 signaling augments the response to microbial products, amplifying inflammation and contributing to mortality.


TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease.

  • Tyler K Ulland‎ et al.
  • Cell‎
  • 2017‎

Elevated risk of developing Alzheimer's disease (AD) is associated with hypomorphic variants of TREM2, a surface receptor required for microglial responses to neurodegeneration, including proliferation, survival, clustering, and phagocytosis. How TREM2 promotes such diverse responses is unknown. Here, we find that microglia in AD patients carrying TREM2 risk variants and TREM2-deficient mice with AD-like pathology have abundant autophagic vesicles, as do TREM2-deficient macrophages under growth-factor limitation or endoplasmic reticulum (ER) stress. Combined metabolomics and RNA sequencing (RNA-seq) linked this anomalous autophagy to defective mammalian target of rapamycin (mTOR) signaling, which affects ATP levels and biosynthetic pathways. Metabolic derailment and autophagy were offset in vitro through Dectin-1, a receptor that elicits TREM2-like intracellular signals, and cyclocreatine, a creatine analog that can supply ATP. Dietary cyclocreatine tempered autophagy, restored microglial clustering around plaques, and decreased plaque-adjacent neuronal dystrophy in TREM2-deficient mice with amyloid-β pathology. Thus, TREM2 enables microglial responses during AD by sustaining cellular energetic and biosynthetic metabolism.


ApoE facilitates the microglial response to amyloid plaque pathology.

  • Jason D Ulrich‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

One of the hallmarks of Alzheimer's disease is the presence of extracellular diffuse and fibrillar plaques predominantly consisting of the amyloid-β (Aβ) peptide. Apolipoprotein E (ApoE) influences the deposition of amyloid pathology through affecting the clearance and aggregation of monomeric Aβ in the brain. In addition to influencing Aβ metabolism, increasing evidence suggests that apoE influences microglial function in neurodegenerative diseases. Here, we characterize the impact that apoE has on amyloid pathology and the innate immune response in APPPS1ΔE9 and APPPS1-21 transgenic mice. We report that Apoe deficiency reduced fibrillar plaque deposition, consistent with previous studies. However, fibrillar plaques in Apoe-deficient mice exhibited a striking reduction in plaque compaction. Hyperspectral fluorescent imaging using luminescent conjugated oligothiophenes identified distinct Aβ morphotypes in Apoe-deficient mice. We also observed a significant reduction in fibrillar plaque-associated microgliosis and activated microglial gene expression in Apoe-deficient mice, along with significant increases in dystrophic neurites around fibrillar plaques. Our results suggest that apoE is critical in stimulating the innate immune response to amyloid pathology.


Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity.

  • Nan Zhang‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

Macrophages resident in different organs express distinct genes, but understanding how this diversity fits into tissue-specific features is limited. Here, we show that selective expression of coagulation factor V (FV) by resident peritoneal macrophages in mice promotes bacterial clearance in the peritoneal cavity and serves to facilitate the well-known but poorly understood "macrophage disappearance reaction." Intravital imaging revealed that resident macrophages were nonadherent in peritoneal fluid during homeostasis. Bacterial entry into the peritoneum acutely induced macrophage adherence and associated bacterial phagocytosis. However, optimal control of bacterial expansion in the peritoneum also required expression of FV by the macrophages to form local clots that effectively brought macrophages and bacteria in proximity and out of the fluid phase. Thus, acute cellular adhesion and resident macrophage-induced coagulation operate independently and cooperatively to meet the challenges of a unique, open tissue environment. These events collectively account for the macrophage disappearance reaction in the peritoneal cavity.


CRTAM Protects Against Intestinal Dysbiosis During Pathogenic Parasitic Infection by Enabling Th17 Maturation.

  • Luisa Cervantes-Barragan‎ et al.
  • Frontiers in immunology‎
  • 2019‎

The gastrointestinal tract hosts the largest collection of commensal microbes in the body. Infections at this site can cause significant perturbations in the microbiota, known as dysbiosis, that facilitate the expansion of pathobionts, and can elicit inappropriate immune responses that impair the intestinal barrier function. Dysbiosis typically occurs during intestinal infection with Toxoplasma gondii. Host resistance to T. gondii depends on a potent Th1 response. In addition, a Th17 response is also elicited. How Th17 cells contribute to the host response to T. gondii remains unclear. Here we show that class I-restricted T cell-associated molecule (CRTAM) expression on T cells is required for an optimal IL-17 production during T. gondii infection. Moreover, that the lack of IL-17, results in increased immunopathology caused by an impaired antimicrobial peptide production and bacterial translocation from the intestinal lumen to the mesenteric lymph nodes and spleen.


DC-SCRIPT deficiency delays mouse mammary gland development and branching morphogenesis.

  • Chunling Tang‎ et al.
  • Developmental biology‎
  • 2019‎

Mammary glands are unique organs in which major adaptive changes occur in morphogenesis and development after birth. Breast cancer is the most common cancer and a major cause of mortality in females worldwide. We have previously identified the loss of expression of the transcription regulator DC-SCRIPT (Zfp366) as a prominent prognostic event in estrogen receptor positive breast cancer patients. DC-SCRIPT affects multiple transcriptional events in breast cancer cells, including estrogen and progesterone receptor-mediated transcription, and promotes CDKN2B-related cell cycle arrest. As loss of DC-SCRIPT expression appears an early event in breast cancer development, we here investigated the role of DC-SCRIPT in mammary gland development using wild-type and DC-SCRIPT knockout mice. Mice lacking DC-SCRIPT exhibited severe breeding problems and showed significant growth delay relative to littermate wild-type mice. Subsequent analysis revealed that DC-SCRIPT was expressed in mouse mammary epithelium and that DC-SCRIPT deficiency delayed mammary gland morphogenesis in vivo. Finally, analysis of 3D mammary gland organoid cultures confirmed that loss of DC-SCRIPT dramatically delayed mammary organoid branching in vitro. The study shows for the first time that DC-SCRIPT deficiency delays mammary gland morphogenesis in vivo and in vitro. These data define DC-SCRIPT as a novel modulator of mammary gland development.


Expression of CD226 is associated to but not required for NK cell education.

  • Arnika K Wagner‎ et al.
  • Nature communications‎
  • 2017‎

DNAX accessory molecule-1 (DNAM-1, also known as CD226) is an activating receptor expressed on subsets of natural killer (NK) and T cells, interacts with its ligands CD155 or CD112, and has co-varied expression with inhibitory receptors. Since inhibitory receptors control NK-cell activation and are necessary for MHC-I-dependent education, we investigated whether DNAM-1 expression is also involved in NK-cell education. Here we show an MHC-I-dependent correlation between DNAM-1 expression and NK-cell education, and an association between DNAM-1 and NKG2A that occurs even in MHC class I deficient mice. DNAM-1 is expressed early during NK-cell development, precedes the expression of MHC-I-specific inhibitory receptors, and is modulated in an education-dependent fashion. Cd226-/- mice have missing self-responses and NK cells with a normal receptor repertoire. We propose a model in which NK-cell education prevents or delays downregulation of DNAM-1. This molecule endows educated NK cells with enhanced effector functions but is dispensable for education.


Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity.

  • Daniel DiToro‎ et al.
  • Immunity‎
  • 2020‎

Appropriate balance of T helper 17 (Th17) and regulatory T (Treg) cells maintains immune tolerance and host defense. Disruption of Th17-Treg cell balance is implicated in a number of immune-mediated diseases, many of which display dysregulation of the insulin-like growth factor (IGF) system. Here, we show that, among effector T cell subsets, Th17 and Treg cells selectively expressed multiple components of the IGF system. Signaling through IGF receptor (IGF1R) activated the protein kinase B-mammalian target of rapamycin (AKT-mTOR) pathway, increased aerobic glycolysis, favored Th17 cell differentiation over that of Treg cells, and promoted a heightened pro-inflammatory gene expression signature. Group 3 innate lymphoid cells (ILC3s), but not ILC1s or ILC2s, were similarly responsive to IGF signaling. Mice with deficiency of IGF1R targeted to T cells failed to fully develop disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Thus, the IGF system represents a previously unappreciated pathway by which type 3 immunity is modulated and immune-mediated pathogenesis controlled.


The Tumor Necrosis Factor Superfamily Member RANKL Suppresses Effector Cytokine Production in Group 3 Innate Lymphoid Cells.

  • Jennifer K Bando‎ et al.
  • Immunity‎
  • 2018‎

While signals that activate group 3 innate lymphoid cells (ILC3s) have been described, the factors that negatively regulate these cells are less well understood. Here we found that the tumor necrosis factor (TNF) superfamily member receptor activator of nuclear factor κB ligand (RANKL) suppressed ILC3 activity in the intestine. Deletion of RANKL in ILC3s and T cells increased C-C motif chemokine receptor 6 (CCR6)+ ILC3 abundance and enhanced production of interleukin-17A (IL-17A) and IL-22 in response to IL-23 and during infection with the enteric murine pathogen Citrobacter rodentium. Additionally, CCR6+ ILC3s produced higher amounts of the master transcriptional regulator RORγt at steady state in the absence of RANKL. RANKL-mediated suppression was independent of T cells, and instead occurred via interactions between CCR6+ ILC3s that expressed both RANKL and its receptor, RANK. Thus, RANK-RANKL interactions between ILC3s regulate ILC3 abundance and activation, suggesting that cell clustering may control ILC3 activity.


LIGHT-HVEM Signaling in Innate Lymphoid Cell Subsets Protects Against Enteric Bacterial Infection.

  • Goo-Young Seo‎ et al.
  • Cell host & microbe‎
  • 2018‎

Innate lymphoid cells (ILCs) are important regulators of early infection at mucosal barriers. ILCs are divided into three groups based on expression profiles, and are activated by cytokines and neuropeptides. Yet, it remains unknown if ILCs integrate other signals in providing protection. We show that signaling through herpes virus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor superfamily, in ILC3 is important for host defense against oral infection with the bacterial pathogen Yersinia enterocolitica. HVEM stimulates protective interferon-γ (IFN-γ) secretion from ILCs, and mice with HVEM-deficient ILC3 exhibit reduced IFN-γ production, higher bacterial burdens and increased mortality. In addition, IFN-γ production is critical as adoptive transfer of wild-type but not IFN-γ-deficient ILC3 can restore protection to mice lacking ILCs. We identify the TNF superfamily member, LIGHT, as the ligand inducing HVEM signals in ILCs. Thus HVEM signaling mediated by LIGHT plays a critical role in regulating ILC3-derived IFN-γ production for protection following infection. VIDEO ABSTRACT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: