Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation.

  • Zexing Li‎ et al.
  • PLoS pathogens‎
  • 2015‎

Stimulator of interferon genes (STING, also known as MITA and ERIS) is critical in protecting the host against DNA pathogen invasion. However, the molecular mechanism underlying the regulation of STING remains unclear. Here, we show that PPM1A negatively regulates antiviral signaling by targeting STING in its phosphatase activity-dependent manner, and in a line with this, PPM1A catalytically dephosphorylates STING and TBK1 in vitro. Importantly, we provide evidence that whereas TBK1 promotes STING aggregation in a phosphorylation-dependent manner, PPM1A antagonizes STING aggregation by dephosphorylating both STING and TBK1, emphasizing that phosphorylation is crucial for the efficient activation of STING. Our findings demonstrate a novel regulatory circuit in which STING and TBK1 reciprocally regulate each other to enable efficient antiviral signaling activation, and PPM1A dephosphorylates STING and TBK1, thereby balancing this antiviral signal transduction.


Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation.

  • Yadi Wu‎ et al.
  • Nature communications‎
  • 2017‎

Snail1, a key transcription factor of epithelial-mesenchymal transition (EMT), is subjected to ubiquitination and degradation, but the mechanism by which Snail1 is stabilized in tumours remains unclear. We identify Dub3 as a bona fide Snail1 deubiquitinase, which interacts with and stabilizes Snail1. Dub3 is overexpressed in breast cancer; knockdown of Dub3 resulted in Snail1 destabilization, suppressed EMT and decreased tumour cell migration, invasion, and metastasis. These effects are rescued by ectopic Snail1 expression. IL-6 also stabilizes Snail1 by inducing Dub3 expression, the specific inhibitor WP1130 binds to Dub3 and inhibits the Dub3-mediating Snail1 stabilization in vitro and in vivo. Our study reveals a critical Dub3-Snail1 signalling axis in EMT and metastasis, and provides an effective therapeutic approach against breast cancer.


Hedgehog signaling promotes lipolysis in adipose tissue through directly regulating Bmm/ATGL lipase.

  • Jie Zhang‎ et al.
  • Developmental biology‎
  • 2020‎

Hedgehog (Hh) signaling has been shown to regulate multiple developmental processes, however, it is unclear how it regulates lipid metabolism. Here, we demonstrate that Hh signaling exhibits potent activity in Drosophila fat body, which is induced by both locally expressed and midgut-derived Hh proteins. Inactivation of Hh signaling increases, whereas activation of Hh signaling decreases lipid accumulation. The major lipase Brummer (Bmm) acts downstream of Smoothened (Smo) in Hh signaling to promote lipolysis, therefore, the breakdown of triacylglycerol (TAG). We identify a critical Ci binding site in bmm promoter that is responsible to mediate Bmm expression induced by Hh signaling. Genomic mutation of the Ci binding site significantly reduces the expression of Bmm and dramatically decreases the responsiveness to Ci overexpression. Together, our findings provide a model for lipolysis to be regulated by Hh signaling, raising the possibility for Hh signaling to be involved in lipid metabolic and/or lipid storage diseases.


Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry.

  • Erica Silva‎ et al.
  • Molecular biology of the cell‎
  • 2016‎

The establishment of left-right (L-R) asymmetry in vertebrates is dependent on the sensory and motile functions of cilia during embryogenesis. Mutations in CCDC11 disrupt L-R asymmetry and cause congenital heart disease in humans, yet the molecular and cellular functions of the protein remain unknown. Here we demonstrate that Ccdc11 is a novel component of centriolar satellites-cytoplasmic granules that serve as recruitment sites for proteins destined for the centrosome and cilium. Ccdc11 interacts with core components of satellites, and its loss disrupts the subcellular organization of satellite proteins and perturbs primary cilium assembly. Ccdc11 colocalizes with satellite proteins in human multiciliated tracheal epithelia, and its loss inhibits motile ciliogenesis. Similarly, depletion of CCDC11 in Xenopus embryos causes defective assembly and motility of cilia in multiciliated epidermal cells. To determine the role of CCDC11 during vertebrate development, we generated mutant alleles in zebrafish. Loss of CCDC11 leads to defective ciliogenesis in the pronephros and within the Kupffer's vesicle and results in aberrant L-R axis determination. Our results highlight a critical role for Ccdc11 in the assembly and function of motile cilia and implicate centriolar satellite-associated proteins as a new class of proteins in the pathology of L-R patterning and congenital heart disease.


Bbof1 is required to maintain cilia orientation.

  • Yuan-Hung Chien‎ et al.
  • Development (Cambridge, England)‎
  • 2013‎

Multiciliate cells (MCCs) are highly specialized epithelial cells that employ hundreds of motile cilia to produce a vigorous directed flow in a variety of organ systems. The production of this flow requires the establishment of planar cell polarity (PCP) whereby MCCs align hundreds of beating cilia along a common planar axis. The planar axis of cilia in MCCs is known to be established via the PCP pathway and hydrodynamic cues, but the downstream steps required for cilia orientation remain poorly defined. Here, we describe a new component of cilia orientation, based on the phenotypic analysis of an uncharacterized coiled-coil protein, called bbof1. We show that the expression of bbof1 is induced during the early phases of MCC differentiation by the master regulator foxj1. MCC differentiation and ciliogenesis occurs normally in embryos where bbof1 activity is reduced, but cilia orientation is severely disrupted. We show that cilia in bbof1 mutants can still respond to patterning and hydrodynamic cues, but lack the ability to maintain their precise orientation. Misexpression of bbof1 promotes cilia alignment, even in the absence of flow or in embryos where microtubules and actin filaments are disrupted. Bbof1 appears to mediate cilia alignment by localizing to a polar structure adjacent to the basal body. Together, these results suggest that bbof1 is a basal body component required in MCCs to align and maintain cilia orientation in response to flow.


Analysis of Smoothened Phosphorylation and Activation in Cultured Cells and Wing Discs of Drosophila.

  • Kai Jiang‎ et al.
  • Methods in molecular biology (Clifton, N.J.)‎
  • 2015‎

Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Binding of Hh to Ptc-Ihog relieves the Patched (Ptc)-mediated inhibition of Smo, which allows Smo to activate the cubitus interruptus (Ci)/Gli family of zinc finger transcription factors and thereby induce the expression of Hh target genes, such as decapentaplegic (dpp), ptc, and engrailed (en). The activation of Smo appears to be one of the most important events in Hh signaling. Studies have shown that Hh induces cell surface/ciliary accumulation and phosphorylation of Smo by multiple kinases, including protein kinase A (PKA), casein kinase 1 (CK1), casein kinase 2 (CK2), G protein-coupled receptor kinase 2 (Gprk2), and atypical PKC (aPKC). Here, we describe the assays used to examine the activity of Smo in Hh signaling, including in vitro kinase, ptc-luciferase reporter assay, cell surface accumulation assay, fluorescence resonance energy transfer (FRET) assay, and wing disc immunostaining. These assays are powerful tools to study Smo phosphorylation and activation, which have provided mechanistic insight into a better understanding the mechanisms of Smo regulation.


Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS.

  • Ruohan Xia‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Amyotrophic lateral sclerosis (ALS) is progressive neurodegenerative disease characterized by the loss of motor function. Several ALS genes have been identified as their mutations can lead to familial ALS, including the recently reported RNA-binding protein fused in sarcoma (Fus). However, it is not clear how mutations of Fus lead to motor neuron degeneration in ALS. In this study, we present a Drosophila model to examine the toxicity of Fus, its Drosophila orthologue Cabeza (Caz), and the ALS-related Fus mutants.


Massive centriole production can occur in the absence of deuterosomes in multiciliated cells.

  • Olivier Mercey‎ et al.
  • Nature cell biology‎
  • 2019‎

Multiciliated cells (MCCs) amplify large numbers of centrioles that convert into basal bodies, which are required for producing multiple motile cilia. Most centrioles amplified by MCCs grow on the surface of organelles called deuterosomes, whereas a smaller number grow through the centriolar pathway in association with the two parent centrioles. Here, we show that MCCs lacking deuterosomes amplify the correct number of centrioles with normal step-wise kinetics. This is achieved through a massive production of centrioles on the surface and in the vicinity of parent centrioles. Therefore, deuterosomes may have evolved to relieve, rather than supplement, the centriolar pathway during multiciliogenesis. Remarkably, MCCs lacking parent centrioles and deuterosomes also amplify the appropriate number of centrioles inside a cloud of pericentriolar and fibrogranular material. These data show that the centriole number is set independently of their nucleation platforms and suggest that massive centriole production in MCCs is a robust process that can self-organize.


Neurotensin Regulates Proliferation and Stem Cell Function in the Small Intestine in a Nutrient-Dependent Manner.

  • Stephanie A Rock‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

Intestinal stem cells (ISCs) are sensitive to dietary alterations and nutrient availability. Neurotensin (NT), a gut peptide localized predominantly to the small bowel and released by fat ingestion, stimulates the growth of intestinal mucosa under basal conditions and during periods of nutrient deprivation, suggesting a possible role for NT on ISC function.


Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened.

  • Yongbin Chen‎ et al.
  • PLoS biology‎
  • 2011‎

Hedgehog (Hh) signaling regulates embryonic development and adult tissue homeostasis through the GPCR-like protein Smoothened (Smo), but how vertebrate Smo is activated remains poorly understood. In Drosophila, Hh dependent phosphorylation activates Smo. Whether this is also the case in vertebrates is unclear, owing to the marked sequence divergence between vertebrate and Drosophila Smo (dSmo) and the involvement of primary cilia in vertebrate Hh signaling. Here we demonstrate that mammalian Smo (mSmo) is activated through multi-site phosphorylation of its carboxyl-terminal tail by CK1α and GRK2. Phosphorylation of mSmo induces its active conformation and simultaneously promotes its ciliary accumulation. We demonstrate that graded Hh signals induce increasing levels of mSmo phosphorylation that fine-tune its ciliary localization, conformation, and activity. We show that mSmo phosphorylation is induced by its agonists and oncogenic mutations but is blocked by its antagonist cyclopamine, and efficient mSmo phosphorylation depends on the kinesin-II ciliary motor. Furthermore, we provide evidence that Hh signaling recruits CK1α to initiate mSmo phosphorylation, and phosphorylation further increases the binding of CK1α and GRK2 to mSmo, forming a positive feedback loop that amplifies and/or sustains mSmo phosphorylation. Hence, despite divergence in their primary sequences and their subcellular trafficking, mSmo and dSmo employ analogous mechanisms for their activation.


Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells.

  • Michael E Werner‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Planar cell polarization represents the ability of cells to orient within the plane of a tissue orthogonal to the apical basal axis. The proper polarized function of multiciliated cells requires the coordination of cilia spacing and cilia polarity as well as the timing of cilia beating during metachronal synchrony. The planar cell polarity pathway and hydrodynamic forces have been shown to instruct cilia polarity. In this paper, we show how intracellular effectors interpret polarity to organize cellular morphology in accordance with asymmetric cellular function. We observe that both cellular actin and microtubule networks undergo drastic reorganization, providing differential roles during the polarized organization of cilia. Using computational angular correlation analysis of cilia orientation, we report a graded cellular organization downstream of cell polarity cues. Actin dynamics are required for proper cilia spacing, global coordination of cilia polarity, and coordination of metachronic cilia beating, whereas cytoplasmic microtubule dynamics are required for local coordination of polarity between neighboring cilia.


An obligatory role for neurotensin in high-fat-diet-induced obesity.

  • Jing Li‎ et al.
  • Nature‎
  • 2016‎

Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers. The effects of NT are mediated through three known NT receptors (NTR1, 2 and 3; also known as NTSR1, 2, and NTSR3, respectively). Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality; however, a role for NT as a causative factor in these diseases is unknown. Here we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3 (also known as sortilin). Consistent with the findings in mice, expression of NT in Drosophila midgut enteroendocrine cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and suggest that NT may provide a prognostic marker of future obesity and a potential target for prevention and treatment.


Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination.

  • Tongchao Li‎ et al.
  • PLoS genetics‎
  • 2016‎

Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.


PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail.

  • Kai Jiang‎ et al.
  • PLoS biology‎
  • 2016‎

In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo.


USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization.

  • Ruohan Xia‎ et al.
  • PLoS biology‎
  • 2012‎

The seven transmembrane protein Smoothened (Smo) is a critical component of the Hedgehog (Hh) signaling pathway and is regulated by phosphorylation, dimerization, and cell-surface accumulation upon Hh stimulation. However, it is not clear how Hh regulates Smo accumulation on the cell surface or how Hh regulates the intracellular trafficking of Smo. In addition, little is known about whether ubiquitination is involved in Smo regulation. In this study, we demonstrate that Smo is multi-monoubiquitinated and that Smo ubiquitination is inhibited by Hh and by phosphorylation. Using an in vivo RNAi screen, we identified ubiquitin-specific protease 8 (USP8) as a deubiquitinase that down-regulates Smo ubiquitination. Inactivation of USP8 increases Smo ubiquitination and attenuates Hh-induced Smo accumulation, leading to decreased Hh signaling activity. Moreover, overexpression of USP8 prevents Smo ubiquitination and elevates Smo accumulation, leading to increased Hh signaling activity. Mechanistically, we show that Hh promotes the interaction of USP8 with Smo aa625-753, which covers the three PKA and CK1 phosphorylation clusters. Finally, USP8 promotes the accumulation of Smo at the cell surface and prevents localization to the early endosomes, presumably by deubiquitinating Smo. Our studies identify USP8 as a positive regulator in Hh signaling by down-regulating Smo ubiquitination and thereby mediating Smo intracellular trafficking.


Basolateral protein Scribble binds phosphatase PP1 to establish a signaling network maintaining apicobasal polarity.

  • Regina B Troyanovsky‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Scribble, a member of the LAP protein family, contributes to the apicobasal polarity (ABP) of epithelial cells. The LAP-unique region of these proteins, which is essential and sufficient for ABP, includes a conserved Leucine-Rich Repeat (LRR) domain. The major binding partners of this region that could regulate ABP remain unknown. Here, using proteomics, native gel electrophoresis, and site-directed mutagenesis, we show that the concave surface of LRR domain in Scribble participates in three types of mutually exclusive interactions-(i) homodimerization, serving as an auto-inhibitory mechanism; (ii) interactions with a diverse set of polarity proteins, such as Llgl1, Llgl2, EPB41L2, and EPB41L5, which produce distinct multiprotein complexes; and (iii) a direct interaction with the protein phosphatase, PP1. Analogy with the complex between PP1 and LRR domain of SDS22, a well-studied PP1 regulator, suggests that the Scibble-PP1 complex stores a latent form of PP1 in the basolateral cell cortex. Such organization may generate a dynamic signaling network wherein PP1 could be dispatched from the complex with Scribble to particular protein ligands, achieving fast dephosphorylation kinetics.


Espin overexpression causes stereocilia defects and provides an anti-capping effect on actin polymerization.

  • Lili Zheng‎ et al.
  • Cytoskeleton (Hoboken, N.J.)‎
  • 2022‎

Stereocilia are actin-based projections of hair cells that are arranged in a step like array, in rows of increasing height, and that constitute the mechanosensory organelle used for the senses of hearing and balance. In order to function properly, stereocilia must attain precise sizes in different hair cell types and must coordinately form distinct rows with varying lengths. Espins are actin-bundling proteins that have a well-characterized role in stereocilia formation; loss of function mutations in Espin result in shorter stereocilia and deafness in the jerker mouse. Here we describe the generation of an Espin overexpressing transgenic mouse line that results in longer first row stereocilia and discoordination of second-row stereocilia length. Furthermore, Espin overexpression results in the misregulation of other stereocilia factors including GNAI3, GPSM2, EPS8, WHRN, and MYO15A, revealing that GNAI3 and GPSM2 are dispensable for stereocilia overgrowth. Finally, using an in vitro actin polymerization assay we show that espin provides an anti-capping function that requires both the G-actin binding WH2 domain as well as either the C-terminal F-actin binding domain or the internal xAB actin-binding domain. Our results provide a novel function for Espins at the barbed ends of actin filaments distinct from its previous known function of actin bundling that may account for their effects on stereocilia growth.


Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance.

  • Ximena M Bustamante-Marin‎ et al.
  • American journal of human genetics‎
  • 2019‎

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.


Overall and cause-specific survival for mucoepidermoid carcinoma of the major salivary glands: Analysis of 2210 patients.

  • Zachary C Taylor‎ et al.
  • World journal of clinical oncology‎
  • 2020‎

Mucoepidermoid carcinoma (MEC) is a rare malignancy of the head and neck; however, it accounts for a majority of the tumors of the salivary glands. This study used a national population-based registry to describe the pre-treatment and treatment-related prognostic factors that influence survival in patients with MEC of the major salivary glands. To our knowledge, this is the largest population-based study examining predictors of both overall and cause-specific survival of MEC of the major salivary glands.


c21orf59/kurly Controls Both Cilia Motility and Polarization.

  • Kimberly M Jaffe‎ et al.
  • Cell reports‎
  • 2016‎

Cilia are microtubule-based projections that function in the movement of extracellular fluid. This requires cilia to be: (1) motile and driven by dynein complexes and (2) correctly polarized on the surface of cells, which requires planar cell polarity (PCP). Few factors that regulate both processes have been discovered. We reveal that C21orf59/Kurly (Kur), a cytoplasmic protein with some enrichment at the base of cilia, is needed for motility; zebrafish mutants exhibit characteristic developmental abnormalities and dynein arm defects. kur was also required for proper cilia polarization in the zebrafish kidney and the larval skin of Xenopus laevis. CRISPR/Cas9 coupled with homologous recombination to disrupt the endogenous kur locus in Xenopus resulted in the asymmetric localization of the PCP protein Prickle2 being lost in mutant multiciliated cells. Kur also makes interactions with other PCP components, including Disheveled. This supports a model wherein Kur plays a dual role in cilia motility and polarization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: