Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Comparison of methods to identify aberrant expression patterns in individual patients: augmenting our toolkit for precision medicine.

  • Daniel Bottomly‎ et al.
  • Genome medicine‎
  • 2013‎

Patient-specific aberrant expression patterns in conjunction with functional screening assays can guide elucidation of the cancer genome architecture and identification of therapeutic targets. Since most statistical methods for expression analysis are focused on differences between experimental groups, the performance of approaches for patient-specific expression analyses are currently less well characterized. A comparison of methods for the identification of genes that are dysregulated relative to a single sample in a given set of experimental samples, to our knowledge, has not been performed.


A potential therapeutic strategy for chronic lymphocytic leukemia by combining Idelalisib and GS-9973, a novel spleen tyrosine kinase (Syk) inhibitor.

  • Russell T Burke‎ et al.
  • Oncotarget‎
  • 2014‎

Agents that target B-cell receptor (BCR) signaling in lymphoid malignancies including idelalisib (GS-1101) and fostamatinib which inhibit the delta isoform of PI3 kinase (PI3Kd) and spleen tyrosine kinase (Syk) respectively have shown significant clinical activity. By disrupting B-cell signaling pathways, idelalisib treatment has been associated with a dramatic lymph node response, but eradication of disease and relapse in high risk disease remain challenges. Targeting the BCR signaling pathway with simultaneous inhibition of PI3Kd and Syk has not yet been reported. We evaluated the pre-clinical activity of idelalisib combined with the novel and selective Syk inhibitor GS-9973 in primary peripheral blood and bone marrow Chronic Lymphocytic Leukemia (CLL) samples. Both PI3Kd and Syk inhibition reduced CLL survival and in combination induced synergistic growth inhibition and further disrupted chemokine signaling at nanomolar concentrations including in bone marrow derived and poor risk samples. Simultaneous targeting of these kinases may significantly increase clinical activity.


Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors.

  • Paavo O Pietarinen‎ et al.
  • Oncotarget‎
  • 2017‎

Tyrosine kinase inhibitors (TKI) are the mainstay treatment of BCR-ABL1-positive leukemia and virtually all patients with chronic myeloid leukemia in chronic phase (CP CML) respond to TKI therapy. However, there is limited information on the cellular mechanisms of response and particularly on the effect of cell differentiation state to TKI sensitivity in vivo and ex vivo/in vitro. We used multiple, independent high-throughput drug sensitivity and resistance testing platforms that collectively evaluated 295 oncology compounds to characterize ex vivo drug response profiles of primary cells freshly collected from newly-diagnosed patients with BCR-ABL1-positive leukemia (n = 40) and healthy controls (n = 12). In contrast to the highly TKI-sensitive cells from blast phase CML and Philadelphia chromosome-positive acute lymphoblastic leukemia, primary CP CML cells were insensitive to TKI therapy ex vivo. Despite maintaining potent BCR-ABL1 inhibitory activity, ex vivo viability of cells was unaffected by TKIs. These findings were validated in two independent patient cohorts and analysis platforms. All CP CML patients under study responded to TKI therapy in vivo. When CP CML cells were sorted based on CD34 expression, the CD34-positive progenitor cells showed good sensitivity to TKIs, whereas the more mature CD34-negative cells were markedly less sensitive. Thus in CP CML, TKIs predominantly target the progenitor cell population while the differentiated leukemic cells (mostly cells from granulocytic series) are insensitive to BCR-ABL1 inhibition. These findings have implications for drug discovery in CP CML and indicate a fundamental biological difference between CP CML and advanced forms of BCR-ABL1-positive leukemia.


Inhibition of p38 MAPK suppresses inflammatory cytokine induction by etoposide, 5-fluorouracil, and doxorubicin without affecting tumoricidal activity.

  • Collin R Elsea‎ et al.
  • PloS one‎
  • 2008‎

Cancer patients undergoing treatment with systemic cancer chemotherapy drugs often experience debilitating fatigue similar to sickness behavior, a normal response to infection or tissue damage caused by the production of the inflammatory cytokines IL-1beta, TNF-alpha, and IL-6. The p38 mitogen activated protein kinase (p38 MAPK) plays a central role in the production of these cytokines and consequently the development of sickness behavior. Targeted inhibitors of p38 MAPK can reduce systemic inflammatory cytokine production and the development of sickness behavior. Several systemic cancer chemotherapy drugs have been shown to stimulate inflammatory cytokine production, yet whether this response is related to a common ability to activate p38 MAPK is not known and is the focus of this study. This understanding may present the possibility of using p38 MAPK inhibitors to reduce chemotherapy-induced inflammatory cytokine production and consequently treatment-related fatigue. One caveat of this approach is a potential reduction in chemotherapeutic efficacy as some believe that p38 MAPK activity is required for chemotherapy-induced cytotoxicity of tumor cells. The purpose of this study was to demonstrate proof of principal that p38 MAPK inhibition can block chemotherapy-induced inflammatory cytokine production without inhibiting drug-induced cytotoxicity using murine peritoneal macrophages and Lewis Lung Carcinoma (LLC1) cells as model cell systems. Using these cells we assessed the requirement of etoposide, doxorubicin, 5-fluorouracil, and docetaxel for p38 MAPK in inflammatory cytokine production and cytotoxicity. Study findings demonstrate that clinically relevant doses of etoposide, doxorubicin, and 5-FU activated p38 MAPK in both macrophages and LLC1 cells. In contrast, docetaxel failed to activate p38 MAPK in either cell type. Activation of p38 MAPK mediated the drug's effects on inflammatory cytokine production in macrophages but not LLC1 cytotoxicity and this was confirmed with inhibitor studies.


Genomic markers of midostaurin drug sensitivity in FLT3 mutated and FLT3 wild-type acute myeloid leukemia patients.

  • Mara W Rosenberg‎ et al.
  • Oncotarget‎
  • 2020‎

Acute myeloid leukemia (AML) is a heterogeneous malignancy with the most common genomic alterations in NPM1, DNMT3A, and FLT3. Midostaurin was the first FLT3 inhibitor FDA approved for AML and is standard of care for FLT3 mutant patients undergoing induction chemotherapy [1, 2]. As there is a spectrum of response, we hypothesized that biological factors beyond FLT3 could play a role in drug sensitivity and that select FLT3-ITD negative samples may also demonstrate sensitivity. Thus, we aimed to identify features that would predict response to midostaurin in FLT3 mutant and wild-type samples. We performed an ex vivo drug sensitivity screen on primary and relapsed AML samples with corresponding targeted sequencing and RNA sequencing. We observed a correlation between FLT3-ITD mutations and midostaurin sensitivity as expected and observed KRAS and TP53 mutations correlating with midostaurin resistance in FLT3-ITD negative samples. Further, we identified genes differentially expressed in sensitive vs. resistant samples independent of FLT3-ITD status. Within FLT3-ITD mutant samples, over-expression of RGL4, oncogene and regulator of the Ras-Raf-MEK-ERK cascade, distinguished resistant from sensitive samples. Overall, this study highlights the complexity underlying midostaurin response. And, our results suggest that therapies that target both FLT3 and MAPK/ERK signaling may help circumvent some cases of resistance.


Functional characterization of two rare BCR-FGFR1+ leukemias.

  • Evan J Barnes‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2020‎

8p11 myeloproliferative syndrome (EMS) represents a unique World Health Organization (WHO)-classified hematologic malignancy defined by translocations of the FGFR1 receptor. The syndrome is a myeloproliferative neoplasm characterized by eosinophilia and lymphadenopathy, with risk of progression to either acute myeloid leukemia (AML) or T- or B-lymphoblastic lymphoma/leukemia. Within the EMS subtype, translocations between breakpoint cluster region (BCR) and fibroblast growth factor receptor 1 (FGFR1) have been shown to produce a dominant fusion protein that is notoriously resistant to tyrosine kinase inhibitors (TKIs). Here, we report two cases of BCR-FGFR1+ EMS identified via RNA sequencing (RNA-seq) and confirmed by fluorescence in situ hybridization (FISH). Sanger sequencing revealed that both cases harbored the exact same breakpoint. In the first case, the patient presented with AML-like disease, and in the second, the patient progressed to B-cell acute lymphoblastic leukemia (B-ALL). Additionally, we observed that that primary leukemia cells from Case 1 demonstrated sensitivity to the tyrosine kinase inhibitors ponatinib and dovitinib that can target FGFR1 kinase activity, whereas primary cells from Case 2 were resistant to both drugs. Taken together, these results suggest that some but not all BCR-FGFR1 fusion positive leukemias may respond to TKIs that target FGFR1 kinase activity.


The PI3K/Akt1 pathway enhances steady-state levels of FANCL.

  • Kim-Hien T Dao‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48-linked chains. Evaluation of a series of N-terminal-deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function.


Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl.

  • Mark A Gregory‎ et al.
  • Cancer cell‎
  • 2010‎

Although Bcr-Abl kinase inhibitors have proven effective in the treatment of chronic myeloid leukemia (CML), they generally fail to eradicate Bcr-Abl(+) leukemia cells. To identify genes whose inhibition sensitizes Bcr-Abl(+) leukemias to killing by Bcr-Abl inhibitors, we performed an RNAi-based synthetic lethal screen with imatinib mesylate in CML cells. This screen identified numerous components of a Wnt/Ca(2+)/NFAT signaling pathway. Antagonism of this pathway led to impaired NFAT activity, decreased cytokine production, and enhanced sensitivity to Bcr-Abl inhibition. Furthermore, NFAT inhibition with cyclosporin A facilitated leukemia cell elimination by the Bcr-Abl inhibitor dasatinib and markedly improved survival in a mouse model of Bcr-Abl(+) acute lymphoblastic leukemia (ALL). Targeting this pathway in combination with Bcr-Abl inhibition could improve treatment of Bcr-Abl(+) leukemias.


IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms.

  • Paula de Melo Campos‎ et al.
  • Oncotarget‎
  • 2016‎

The recurrent V617F mutation in JAK2 (JAK2V617F) has emerged as the primary contributor to the pathogenesis of myeloproliferative neoplasms (MPN). However, the lack of complete response in most patients treated with the JAK1/2 inhibitor, ruxolitinib, indicates the need for identifying pathways that cooperate with JAK2. Activated JAK2 was found to be associated with the insulin receptor substrate 2 (IRS2) in non-hematological cells. We identified JAK2/IRS2 binding in JAK2V617F HEL cells, but not in the JAK2WT U937 cell line. In HEL cells, IRS2 silencing decreased STAT5 phosphorylation, reduced cell viability and increased apoptosis; these effects were enhanced when IRS2 silencing was combined with ruxolitinib. In U937 cells, IRS2 silencing neither reduced cell viability nor induced apoptosis. IRS1/2 pharmacological inhibition in primary MPN samples reduced cell viability in JAK2V617F-positive but not JAK2WT specimens; combination with ruxolitinib had additive effects. IRS2 expression was significantly higher in CD34+ cells from essential thrombocythemia patients compared to healthy donors, and in JAK2V617F MPN patients when compared to JAK2WT. Our data indicate that IRS2 is a binding partner of JAK2V617F in MPN. IRS2 contributes to increased cell viability and reduced apoptosis in JAK2-mutated cells. Combined pharmacological inhibition of IRS2 and JAK2 may have a potential clinical application in MPN.


Activating alleles of JAK3 in acute megakaryoblastic leukemia.

  • Denise K Walters‎ et al.
  • Cancer cell‎
  • 2006‎

Tyrosine kinases are aberrantly activated in numerous malignancies, including acute myeloid leukemia (AML). To identify tyrosine kinases activated in AML, we developed a screening strategy that rapidly identifies tyrosine-phosphorylated proteins using mass spectrometry. This allowed the identification of an activating mutation (A572V) in the JAK3 pseudokinase domain in the acute megakaryoblastic leukemia (AMKL) cell line CMK. Subsequent analysis identified two additional JAK3 alleles, V722I and P132T, in AMKL patients. JAK3(A572V), JAK3(V722I), and JAK3(P132T) each transform Ba/F3 cells to factor-independent growth, and JAK3(A572V) confers features of megakaryoblastic leukemia in a murine model. These findings illustrate the biological importance of gain-of-function JAK3 mutations in leukemogenesis and demonstrate the utility of proteomic approaches to identifying clinically relevant mutations.


Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles.

  • Stefan Fröhling‎ et al.
  • Cancer cell‎
  • 2007‎

Mutations in the juxtamembrane and kinase domains of FLT3 are common in AML, but it is not known whether alterations outside these regions contribute to leukemogenesis. We used a high-throughput platform to interrogate the entire FLT3 coding sequence in AML patients without known FLT3 mutations and experimentally tested the consequences of each candidate leukemogenic allele. This approach identified gain-of-function mutations that activated downstream signaling and conferred sensitivity to FLT3 inhibition and alleles that were not associated with kinase activation, including mutations in the catalytic domain. These findings support the concept that acquired mutations in cancer may not contribute to malignant transformation and underscore the importance of functional studies to distinguish "driver" mutations underlying tumorigenesis from biologically neutral "passenger" alterations.


Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants.

  • Christopher A Eide‎ et al.
  • Cancer cell‎
  • 2019‎

BCR-ABL1 point mutation-mediated resistance to tyrosine kinase inhibitor (TKI) therapy in Philadelphia chromosome-positive (Ph+) leukemia is effectively managed with several approved drugs, including ponatinib for BCR-ABL1T315I-mutant disease. However, therapy options are limited for patients with leukemic clones bearing multiple BCR-ABL1 mutations. Asciminib, an allosteric inhibitor targeting the myristoyl-binding pocket of BCR-ABL1, is active against most single mutants but ineffective against all tested compound mutants. We demonstrate that combining asciminib with ATP site TKIs enhances target inhibition and suppression of resistant outgrowth in Ph+ clinical isolates and cell lines. Inclusion of asciminib restores ponatinib's effectiveness against currently untreatable compound mutants at clinically achievable concentrations. Our findings support combining asciminib with ponatinib as a treatment strategy for this molecularly defined group of patients.


FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells.

  • Nathalie Javidi-Sharifi‎ et al.
  • eLife‎
  • 2019‎

Protective signaling from the leukemia microenvironment leads to leukemia cell persistence, development of resistance, and disease relapse. Here, we demonstrate that fibroblast growth factor 2 (FGF2) from bone marrow stromal cells is secreted in exosomes, which are subsequently endocytosed by leukemia cells, and protect leukemia cells from tyrosine kinase inhibitors (TKIs). Expression of FGF2 and its receptor, FGFR1, are both increased in a subset of stromal cell lines and primary AML stroma; and increased FGF2/FGFR1 signaling is associated with increased exosome secretion. FGFR inhibition (or gene silencing) interrupts stromal autocrine growth and significantly decreases secretion of FGF2-containing exosomes, resulting in less stromal protection of leukemia cells. Likewise, Fgf2 -/- mice transplanted with retroviral BCR-ABL leukemia survive significantly longer than their +/+ counterparts when treated with TKI. Thus, inhibition of FGFR can modulate stromal function, reduce exosome secretion, and may be a therapeutic option to overcome resistance to TKIs.


The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML.

  • Jennifer B Dunlap‎ et al.
  • American journal of hematology‎
  • 2019‎

Acute myeloid leukemia (AML) is a genetically heterogeneous disease with a clinical course predicted by recurrent cytogenetic abnormalities and/or gene mutations. The NPM1 insertion mutations define the largest distinct genetic subset, ∼30% of AML, and is considered a favorable risk marker if there is no (or low allelic ratio) FLT3 internal tandem duplication (FLT3 ITD) mutation. However, ∼40% of patients with mutated NPM1 without FLT3 ITD still relapse, and the factors that drive relapse are still not fully understood. We used a next-generation sequencing panel to examine mutations at diagnosis; clearance of mutations after therapy, and gain/loss of mutations at relapse to prioritize mutations that contribute to relapse. Triple mutation of NPM1, DNMT3A and IDH1/2 showed a trend towards inferior overall survival in our discovery dataset, and was significantly associated with reduced OS in a large independent validation cohort. Analysis of relative variant allele frequencies suggests that early mutation and expansion of DNMT3A and IDH1/2 prior to acquisition of NPM1 mutation leads to increased risk of relapse. This subset of patients may benefit from allogeneic stem cell transplant or clinical trials with IDH inhibitors.


Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition.

  • Rebecca Mitchell‎ et al.
  • Journal of the National Cancer Institute‎
  • 2018‎

Imatinib and second-generation tyrosine kinase inhibitors (TKIs) nilotinib and dasatinib have statistically significantly improved the life expectancy of chronic myeloid leukemia (CML) patients; however, resistance to TKIs remains a major clinical challenge. Although ponatinib, a third-generation TKI, improves outcomes for patients with BCR-ABL-dependent mechanisms of resistance, including the T315I mutation, a proportion of patients may have or develop BCR-ABL-independent resistance and fail ponatinib treatment. By modeling ponatinib resistance and testing samples from these CML patients, it is hoped that an alternative drug target can be identified and inhibited with a novel compound.


Lentiviral-Driven Discovery of Cancer Drug Resistance Mutations.

  • Paul Yenerall‎ et al.
  • Cancer research‎
  • 2021‎

Identifying resistance mutations in a drug target provides crucial information. Lentiviral transduction creates multiple types of mutations due to the error-prone nature of the HIV-1 reverse transcriptase (RT). Here we optimized and leveraged this property to identify drug resistance mutations, developing a technique we term LentiMutate. This technique was validated by identifying clinically relevant EGFR resistance mutations, then applied to two additional clinical anticancer drugs: imatinib, a BCR-ABL inhibitor, and AMG 510, a KRAS G12C inhibitor. Novel deletions in BCR-ABL1 conferred resistance to imatinib. In KRAS-G12C or wild-type KRAS, point mutations in the AMG 510 binding pocket or oncogenic non-G12C mutations conferred resistance to AMG 510. LentiMutate should prove highly valuable for clinical and preclinical cancer-drug development. SIGNIFICANCE: LentiMutate can evaluate a drug's on-target activity and can nominate resistance mutations before they occur in patients, which could accelerate and refine drug development to increase the survival of patients with cancer.


Luxeptinib (CG-806) Targets FLT3 and Clusters of Kinases Operative in Acute Myeloid Leukemia.

  • William G Rice‎ et al.
  • Molecular cancer therapeutics‎
  • 2022‎

Luxeptinib (CG-806) simultaneously targets FLT3 and select other kinase pathways operative in myeloid malignancies. We investigated the range of kinases it inhibits, its cytotoxicity landscape ex vivo with acute myeloid leukemia (AML) patient samples, and its efficacy in xenograft models. Luxeptinib inhibits wild-type (WT) and many of the clinically relevant mutant forms of FLT3 at low nanomolar concentrations. It is a more potent inhibitor of the activity of FLT3-internal tandem duplication, FLT3 kinase domain and gatekeeper mutants than against WT FLT3. Broad kinase screens disclosed that it also inhibits other kinases that can drive oncogenic signaling and rescue pathways, but spares kinases known to be associated with clinical toxicity. In vitro profiling of luxeptinib against 186 AML fresh patient samples demonstrated greater potency relative to other FLT3 inhibitors, including cases with mutations in FLT3, isocitrate dehydrogenase-1/2, ASXL1, NPM1, SRSF2, TP53, or RAS, and activity was documented in a xenograft AML model. Luxeptinib administered continuously orally every 12 hours at a dose that yielded a mean Cmin plasma concentration of 1.0 ± 0.3 μmol/L (SEM) demonstrated strong antitumor activity but no myelosuppression or evidence of tissue damage in mice or dogs in acute toxicology studies. On the basis of these studies, luxeptinib was advanced into a phase I trial for patients with AML and myelodysplastic/myeloproliferative neoplasms.


Predicting response to BET inhibitors using computational modeling: A BEAT AML project study.

  • Leylah M Drusbosky‎ et al.
  • Leukemia research‎
  • 2019‎

Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or -7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.


BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia.

  • Matthew S Zabriskie‎ et al.
  • Cancer cell‎
  • 2014‎

Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome.


Small molecule inhibitor screen identifies synergistic activity of the bromodomain inhibitor CPI203 and bortezomib in drug resistant myeloma.

  • Matthew B Siegel‎ et al.
  • Oncotarget‎
  • 2015‎

Despite significant therapeutic progress in multiple myeloma, drug resistance is uniformly inevitable and new treatments are needed. Our aim was to identify novel, efficacious small-molecule combinations for use in drug resistant multiple myeloma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: