Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Pharmacodynamics of Flucloxacillin in a Neutropenic Murine Thigh Infection Model: A Piece of the Puzzle towards Evidence-Based Dosing.

  • Eveline E Roelofsen‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2022‎

For decades, flucloxacillin has been used to treat methicillin-susceptible Staphylococcus aureus (MSSA). Little is still known about its pharmacodynamics (PD). The present study aimed to determine the pharmacokinetic (PK)/PD index and the PD-index value minimally required for efficacy. MICs of 305 MSSA isolates were measured to determine the wild-type distribution. The PD of 8 S. aureus, 1 S. pyogenes, and 1 S. agalactiae isolates were evaluated in a neutropenic murine thigh infection model. Two S. aureus isolates were used in a dose-fractionation study and a dose−response analysis was performed additionally in the in vivo model. Data were analyzed with a population PK and sigmoid maximum effect model. The end of the wild-type distribution was 1 mg/L. The percentage of time the unbound concentration was above MIC (%fT > MIC) was best correlated with efficacy. For S. aureus, median %fT > 0.25 × MIC required for 1-log reduction was 15%. The value for S. pyogenes was 10%fT > MIC and for S. agalactiae 22%fT > 0.25xMIC for a 1-log reduction. The effect of flucloxacillin reached a 2-log reduction of S. aureus at 20%fT > 0.25xMIC and also for S. pyogenes and S. agalactiae, a reduction was reached. These data may serve to optimize dosing regimens currently used in humans.


Differences in CYP3A genotypes of a liver transplant recipient and the donor liver graft and adjustment of tacrolimus dose.

  • Florine A Berger‎ et al.
  • British journal of clinical pharmacology‎
  • 2019‎

Tacrolimus (Tac) is well established as main immunosuppressant in most immunosuppressive regimens in solid organ transplantation. Due to the narrow therapeutic window, pre dose Tac levels (C0) are monitored in all patients receiving Tac to reach optimal therapeutic levels. Tac is metabolized in the liver and intestine by the cytochrome P450 3A (CYP3A) isoforms CYP3A4 and CYP3A5. We present a case of an African American woman who underwent a liver transplantation in which adequate Tac levels were difficult to accomplish due to differences in cytochrome P450 3A4/5 (CYP3A4/5) polymorphisms of the transplant recipient and the donor liver graft. This case report highlights that genotyping the liver transplant recipient and the donor liver graft might provide data which could be used to predict the tacrolimus metabolism post transplantation.


The effect of therapeutic drug monitoring of risperidone and aripiprazole on weight gain in children and adolescents: the SPACe 2: STAR (trial) protocol of an international multicentre randomised controlled trial.

  • Rebecca A Hermans‎ et al.
  • BMC psychiatry‎
  • 2022‎

Antipsychotic drugs are an important part of the treatment of irritability and aggression in children with an autism spectrum disorder (ASD). However, significant weight gain and metabolic disturbances are clinically relevant side effects of antipsychotic use in children. In the SPACe study, we showed positive correlations between both risperidone and aripiprazole plasma trough concentrations and weight gain over a 6-month period. The trial SPACe 2: STAR is designed as a follow-up study, in which we aim to research whether therapeutic drug monitoring in clinical practice can prevent severe weight gain, while retaining clinical effectiveness.


Efficacy of a loading dose of IV salbutamol in children with severe acute asthma admitted to a PICU: a randomized controlled trial.

  • Shelley A Boeschoten‎ et al.
  • European journal of pediatrics‎
  • 2022‎

The optimal dose regimen for intravenous (IV) treatment in children with severe acute asthma (SAA) is still a matter of debate. We assessed the efficacy of adding a salbutamol loading dose to continuous infusion with salbutamol in children admitted to a pediatric intensive care unit (PICU) with SAA. This multicentre, placebo-controlled randomized trial in the PICUs of four tertiary care children's hospitals included children (2-18 years) with SAA admitted between 2017 and 2019. Children were randomized to receive either a loading dose IV salbutamol (15 mcg/kg, max. 750 mcg) or normal saline while on continuous salbutamol infusion. The primary outcome was the asthma score (Qureshi) 1 h after the intervention. Analysis of covariance models was used to evaluate sensitivity to change in asthma scores. Serum concentrations of salbutamol were obtained. Fifty-eight children were included (29 in the intervention group). Median baseline asthma score was 12 (IQR 10-13) in the intervention group and 11 (9-12) in the control group (p = 0.032). The asthma score 1 h after the intervention did not differ significantly between the groups (p = 0.508, β-coefficient = 0.283). The median increase in salbutamol plasma levels 10 min after the intervention was 13 μg/L (IQR 5-24) in the intervention group and 4 μg/L (IQR 0-7) in the control group (p = 0.001). Side effects were comparable between both groups.


Oral antibiotics lower mycophenolate mofetil drug exposure, possibly by interfering with the enterohepatic recirculation: A case series.

  • Mirjam Simoons‎ et al.
  • Pharmacology research & perspectives‎
  • 2023‎

Mycophenolate mofetil has an important role as immunosuppressive agent in solid organ transplant recipients. Exposure to the active mycophenolic acid (MPA) can be monitored using therapeutic drug monitoring. We present three cases in which MPA exposure severely decreased after oral antibiotic coadministration. By diminishing gut bacteria β-glucuronidase activity, oral antibiotics can prevent deglucuronidation of the inactive MPA-7-O-glucuronide metabolite to MPA and thereby possibly prevent its enterohepatic recirculation. This pharmacokinetic interaction could result in rejection, which makes it clinically relevant in solid organ transplant recipients, especially when therapeutic drug monitoring frequency is low. Routine screening for this interaction, preferably supported by clinical decision support systems, and pragmatic close monitoring of the MPA exposure in cases is advised.


Immunomonitoring of Tacrolimus in Healthy Volunteers: The First Step from PK- to PD-Based Therapeutic Drug Monitoring?

  • Aliede E In 't Veld‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Therapeutic drug monitoring is routinely performed to maintain optimal tacrolimus concentrations in kidney transplant recipients. Nonetheless, toxicity and rejection still occur within an acceptable concentration-range. To have a better understanding of the relationship between tacrolimus dose, tacrolimus concentration, and its effect on the target cell, we developed functional immune tests for the quantification of the tacrolimus effect. Twelve healthy volunteers received a single dose of tacrolimus, after which intracellular and whole blood tacrolimus concentrations were measured and were related to T cell functionality. A significant correlation was found between tacrolimus concentrations in T cells and whole blood concentrations (r = 0.71, p = 0.009), while no correlation was found between tacrolimus concentrations in peripheral blood mononuclear cells (PBMCs) and whole blood (r = 0.35, p = 0.27). Phytohemagglutinin (PHA) induced the production of IL-2 and IFNγ, as well as the inhibition of CD71 and CD154 expression on T cells at 1.5 h post-dose, when maximum tacrolimus levels were observed. Moreover, the in vitro tacrolimus effect of the mentioned markers corresponded with the ex vivo effect after dosing. In conclusion, our results showed that intracellular tacrolimus concentrations mimic whole blood concentrations, and that PHA-induced cytokine production (IL-2 and IFNγ) and activation marker expression (CD71 and CD154) are suitable readout measures to measure the immunosuppressive effect of tacrolimus on the T cell.


Population pharmacodynamic modelling of midazolam induced sedation in terminally ill adult patients.

  • Linda G Franken‎ et al.
  • British journal of clinical pharmacology‎
  • 2018‎

Midazolam is the drug of choice for palliative sedation and is titrated to achieve the desired level of sedation. A previous pharmacokinetic (PK) study showed that variability between patients could be partly explained by renal function and inflammatory status. The goal of this study was to combine this PK information with pharmacodynamic (PD) data, to evaluate the variability in response to midazolam and to find clinically relevant covariates that may predict PD response.


Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients.

  • Marith I Francke‎ et al.
  • British journal of clinical pharmacology‎
  • 2021‎

Tacrolimus is a critical dose drug and to avoid under- and overexposure, therapeutic drug monitoring is standard practice. However, rejection and drug-related toxicity occur despite whole-blood tacrolimus pre-dose concentrations ([Tac]blood ) being on target. Monitoring tacrolimus concentrations at the target site (within peripheral blood mononuclear cells; [Tac]cells ) may better correlate with drug-efficacy. The aim of this study was to (1) investigate the relationship between [Tac]blood and [Tac]cells , (2) identify factors affecting the tacrolimus distribution in cells and whole-blood, and (3) study the relationship between [Tac]cells and clinical outcomes after kidney transplantation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: