Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 100 papers

Single Nucleotide Polymorphisms in Selected Apoptotic Genes and BPDE-Induced Apoptotic Capacity in Apparently Normal Primary Lymphocytes: A Genotype-Phenotype Correlation Analysis.

  • Zhibin Hu‎ et al.
  • Journal of cancer epidemiology‎
  • 2008‎

Apoptotic capacity (AC) in primary lymphocytes may be a marker for cancer susceptibility, and functional single nucleotide polymorphisms (SNPs) in genes involved in apoptotic pathways may modulate cellular AC in response to DNA damage. To further examine the correlation between apoptotic genotypes and phenotype, we genotyped 14 published SNPs in 11 apoptosis-related genes (i.e., p53, Bcl-2, BAX, CASP9, DR4, Fas, FasL, CASP8, CASP10, CASP3, and CASP7) and assessed the AC in response to benzo[a]pyrene-7,8-9,10-diol epoxide (BPDE) in cultured primary lymphocytes from 172 cancer-free subjects. We found that among these 14 SNPs, R72P, intron 3 16-bp del/ins, and intron 6 G>A in p53, -938C>A in Bcl-2, and I522L in CASP10 were significant predictors of the BPDE-induced lymphocytic AC in single-locus analysis. In the combined analysis of the three p53 variants, we found that the individuals with the diplotypes carrying 0-1 copy of the common p53 R-del-G haplotype had higher AC values compared to other genotypes. Although the study size may not have the statistical power to detect the role of other SNPs in AC, our findings suggest that some SNPs in genes involved in the intrinsic apoptotic pathway may modulate lymphocytic AC in response to BPDE exposure in the general population. Larger studies are needed to validate these findings for further studying individual susceptibility to cancer and other apoptosis-related diseases.


Effect of Tai Chi on mononuclear cell functions in patients with non-small cell lung cancer.

  • Jing Liu‎ et al.
  • BMC complementary and alternative medicine‎
  • 2015‎

Tai Chi is the Chinese traditional medicine exercise for mind-body health. The objective of this study is to investigate the effect of Tai Chi Chuan (TCC) exercise on the proliferative and cytolytic/tumoricidal activities of peripheral blood mononuclear cells (PBMCs) in postsurgical non-small cell lung cancer (NSCLC) patients.


A single-nucleotide polymorphism of miR-146a and psoriasis: an association and functional study.

  • Weigang Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

Epidermal growth factor receptor (EGFR), which is overexpressed in psoriatic lesions, has been proven to contribute to the hyperproliferation of keratinocytes in psoriasis. Single nucleotide polymorphisms (SNPs) involved in miRNAs that can regulate the expression of EGFR could potentially influence the development of psoriasis. The present study investigated the association between a functional SNP of rs2910164 in miR-146a and the risk of psoriasis in the Chinese Han population. A total of 521 Han Chinese patients with psoriasis and 582 healthy controls were recruited in this study. The miR-146a rs2910164 SNP was genotyped by polymerase chain reaction-restriction fragment length polymorphism. Overall, a significantly increased risk of psoriasis was associated with the rs2910164 miR-146a CG and GG genotypes (adjusted OR, 1.38; 95% CI, 1.06-1.80). Furthermore, the rs2910164G allele in miR-146a attenuated its inhibitory regulation on the expression of EGFR as well as the proliferation of human keratinocytes, and lowered the level of miR-146a in the psoriatic lesions. These findings indicate that the rs2910164G allele in miR-146a weakens its suppression on the proliferation of keratinocytes probably through the decreased inhibition of the target gene, EGFR, which may account for the increased risk of psoriasis in this study population.


Involvement of Histamine and RhoA/ROCK in Penicillin Immediate Hypersensitivity Reactions.

  • Jiayin Han‎ et al.
  • Scientific reports‎
  • 2016‎

The mechanism of penicillin immediate hypersensitivity reactions has not been completely elucidated. These reactions are generally considered to be mediated by IgE, but penicillin-specific IgE could not be detected in most cases. This study demonstrated that penicillin was able to cause vascular hyperpermeability in a mouse model mimicking clinical symptoms of penicillin immediate hypersensitivity reactions. The first exposure to penicillin also induced immediate edema and exudative reactions in ears and lungs of mice in a dose-dependent manner. Vasodilation was noted in microvessels in ears. These reactions were unlikely to be immune-mediated reactions, because no penicillin-specific IgE was produced. Furthermore, penicillin treatment directly elicited rapid histamine release. Penicillin also led to F-actin reorganization in human umbilical vein endothelial cells and increased the permeability of the endothelial monolayer. Activation of the RhoA/ROCK signaling pathway was observed in ears and lungs of mice and in endothelial cells after treatment with penicillin. Both an anti-histamine agent and a ROCK inhibitor attenuated penicillin immediate hypersensitivity reactions in mice. This study presents a novel mechanism of penicillin immediate hypersensitivity reactions and suggests a potential preventive approach against these reactions.


Oxidative stress drives CD8+ T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes.

  • Shuli Li‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2017‎

In patients with vitiligo, an increased reactive oxygen species (ROS) level has been proved to be a key player during disease initiation and progression in melanocytes. Nevertheless, little is known about the effects of ROS on other cells involved in the aberrant microenvironment, such as keratinocytes and the following immune events. CXCL16 is constitutively expressed in keratinocytes and was recently found to mediate homing of CD8+ T cells in human skin.


CLC-3 chloride channels moderate long-term potentiation at Schaffer collateral-CA1 synapses.

  • Laurel M Farmer‎ et al.
  • The Journal of physiology‎
  • 2013‎

The chloride channel CLC-3 is expressed in the brain on synaptic vesicles and postsynaptic membranes. Although CLC-3 is broadly expressed throughout the brain, the CLC-3 knockout mouse shows complete, selective postnatal neurodegeneration of the hippocampus, suggesting a crucial role for the channel in maintaining normal brain function. CLC-3 channels are functionally linked to NMDA receptors in the hippocampus; NMDA receptor-dependent Ca(2+) entry, activation of Ca(2+)/calmodulin kinase II and subsequent gating of CLC-3 link the channels via a Ca(2+)-mediated feedback loop. We demonstrate that loss of CLC-3 at mature synapses increases long-term potentiation from 135 ± 4% in the wild-type slice preparation to 154 ± 7% above baseline (P < 0.001) in the knockout; therefore, the contribution of CLC-3 is to reduce synaptic potentiation by ∼40%. Using a decoy peptide representing the Ca(2+)/calmodulin kinase II phosphorylation site on CLC-3, we show that phosphorylation of CLC-3 is required for its regulatory function in long-term potentiation. CLC-3 is also expressed on synaptic vesicles; however, our data suggest functionally separable pre- and postsynaptic roles. Thus, CLC-3 confers Cl(-) sensitivity to excitatory synapses, controls the magnitude of long-term potentiation and may provide a protective limit on Ca(2+) influx.


The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing.

  • Chao Wei‎ et al.
  • PloS one‎
  • 2015‎

In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process.


Chloride-hydrogen antiporters ClC-3 and ClC-5 drive osteoblast mineralization and regulate fine-structure bone patterning in vitro.

  • Quitterie C Larrouture‎ et al.
  • Physiological reports‎
  • 2015‎

Osteoblasts form an epithelium-like layer with tight junctions separating bone matrix from extracellular fluid. During mineral deposition, calcium and phosphate precipitation in hydroxyapatite liberates 0.8 mole of H(+) per mole Ca(+2). Thus, acid export is needed for mineral formation. We examined ion transport supporting osteoblast vectorial mineral deposition. Previously we established that Na/H exchangers 1 and 6 are highly expressed at secretory osteoblast basolateral surfaces and neutralize massive acid loads. The Na/H exchanger regulatory factor-1 (NHERF1), a pdz-organizing protein, occurs at mineralizing osteoblast basolateral surfaces. We hypothesized that high-capacity proton transport from matrix into osteoblast cytosol must exist to support acid transcytosis for mineral deposition. Gene screening in mineralizing osteoblasts showed dramatic expression of chloride-proton antiporters ClC-3 and ClC-5. Antibody localization showed that ClC-3 and ClC-5 occur at the apical secretory surface facing the bone matrix and in membranes of buried osteocytes. Surprisingly, the Clcn3(-/-) mouse has only mildly disordered mineralization. However, Clcn3(-/-) osteoblasts have large compensatory increases in ClC-5 expression. Clcn3(-/-) osteoblasts mineralize in vitro in a striking and novel trabecular pattern; wild-type osteoblasts form bone nodules. In mesenchymal stem cells from Clcn3(-/-) mice, lentiviral ClC-5 shRNA created Clcn3(-/-), ClC-5 knockdown cells, validated by western blot and PCR. Osteoblasts from these cells produced no mineral under conditions where wild-type or Clcn3(-/-) cells mineralize well. We conclude that regulated acid export, mediated by chloride-proton exchange, is essential to drive normal bone mineralization, and that CLC transporters also regulate fine patterning of bone.


AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo.

  • Xiaowen Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR -129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that -129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with -129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than -129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo.


Analysis of large phenotypic variability of EEC and SHFM4 syndromes caused by K193E mutation of the TP63 gene.

  • Jianhua Wei‎ et al.
  • PloS one‎
  • 2012‎

EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292) is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD) of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE), isolated ectodermal dysplasia, and isolated Split Hand/Foot Malformation type 4 (SHFM4). Genotype-phenotype and DBD structural modeling analysis showed that the K193-located loop L2-A is associated with R280 through hydrogen bonding interactions, while R280 mutations also often cause large phenotypic variability of EEC and SHFM4. Thus, we speculate that K193 and several other DBD mutation-associated syndromes may share similar pathogenic mechanisms, particularly in the case of the same mutation with different phenotypes. Our study and others also suggest that the phenotypic variability of EEC is attributed, at least partially, to genetic and/or epigenetic modifiers.


Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia.

  • Chunying Li‎ et al.
  • Cell‎
  • 2007‎

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.


Study of the accumulation and distribution of arsenic species and association with arsenic toxicity in rats after 30 days of oral realgar administration.

  • Yan Yi‎ et al.
  • Journal of ethnopharmacology‎
  • 2020‎

Because the toxicity and efficacy of arsenic is closely related to its chemical species, we conducted examinations of arsenic species accumulation and distribution in the rat body after one-time and 30-day realgar administration and then elucidated the probable roles of different arsenic species in the short-term toxicity of realgar.


Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo.

  • Yuanmin He‎ et al.
  • Scientific reports‎
  • 2017‎

In vitiligo, melanocytes are particularly vulnerable to oxidative stress owing to the pro-oxidant state generated during melanin synthesis and to the genetic antioxidant defects. Autophagy is a controlled self-digestion process which can protect cells against oxidative damage. However, the exact role of autophagy in vitiligo melanocytes in response to oxidative stress and the mechanism involved are still not clear. To determine the implications of autophagy for melanocyte survival in response to oxidative stress, we first detected the autophagic flux in normal melanocytes exposure to H2O2, and found that autophagy was significantly enhanced in normal melanocytes, for protecting cells against H2O2-induced oxidative damage. Nevertheless, vitiligo melanocytes exhibited dysregulated autophagy and hypersensitivity to H2O2-induced oxidative injury. In addition, we confirmed that the impairment of Nrf2-p62 pathway is responsible for the defects of autophagy in vitiligo melanocytes. Noteworthily, upregulation of the Nrf2-p62 pathway or p62 reduced H2O2-induced oxidative damage of vitiligo melanocytes. Therefore, our data demonstrated that dysregulated autophagy owing to the impairment of Nrf2-p62 pathway increase the sensitivity of vitiligo melanocytes to oxidative stress, thus promote the development of vitiligo. Upregulation of p62-dependent autophagy may be applied to vitiligo treatment in the future.


Gut Microbial Dysbiosis and Plasma Metabolic Profile in Individuals With Vitiligo.

  • Qingrong Ni‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Autoimmune diseases are increasingly linked to aberrant gut microbiome and relevant metabolites. However, the association between vitiligo and the gut microbiome remains to be elucidated. Thus, we conducted a case-control study through 16S rRNA sequencing and serum untargeted-metabolomic profiling based on 30 vitiligo patients and 30 matched healthy controls. In vitiligo patients, the microbial composition was distinct from that of healthy controls according to the analysis on α- and β-diversity (P < 0.05), with a characteristic decreased Bacteroidetes: Firmicutes ratio. Meanwhile, the levels of 23 serum metabolites (including taurochenodeoxycholate and L-NG-monomethyl-arginine) in the vitiligo patients were different from those in the healthy individuals and showed significant correlations with some microbial markers. We found that Corynebacterium 1, Ruminococcus 2, Jeotgalibaca and Psychrobacter were correlated significantly with disease duration and serum IL-1β level in vitiligo patients. And Psychrobacter was identified as the most predictive features for vitiligo by machine learning analysis ("importance" = 0.0236). Finally, combining multi-omics data and joint prediction models with accuracies up to 0.929 were established with dominant contribution of Corynebacterium 1 and Psychrobacter. Our findings replenished the previously unknown relationship between gut dysbiosis and vitiligo circulating metabolome and enrolled the gut-skin axis into the understanding of vitiligo pathogenesis.


Combined carbon photon and hydrogel therapy mediates the synergistic repair of full-thickness skin wounds.

  • Fan Yang‎ et al.
  • The Journal of international medical research‎
  • 2020‎

This study investigated the synergistic repair effects of Prontosan hydrogel and carbon photon therapy in a rat full-thickness wound model.


Down-regulated miR-23a Contributes to the Metastasis of Cutaneous Melanoma by Promoting Autophagy.

  • Weinan Guo‎ et al.
  • Theranostics‎
  • 2017‎

Melanoma is among the most aggressive tumors, and the occurrence of metastasis leads to a precipitous drop in the patients' survival. Therefore, identification of metastasis-associated biomarkers and therapeutic targets will contribute a lot to improving melanoma theranostics. Recently, microRNAs (miRNAs) have been implicated in modulating cancer invasion and metastasis, and are proved as potential non-invasive biomarkers in sera for various tumors. Here, we reported miR-23a as a novel metastasis-associated miRNA that played a remarkable role in modulating melanoma invasive and metastatic capacity and was of great value in predicting melanoma metastasis and prognosis. We found that serum miR-23a level was significantly down-regulated in metastatic melanoma patients and highly correlated with poor clinical outcomes. In addition, miR-23a level was also remarkably decreased in metastatic melanoma tissues and cell lines. Furthermore, overexpressed miR-23a suppressed the invasive and migratory property of melanoma cells by abrogating autophagy through directly targeting ATG12. Specially, miR-23a-ATG12 axis attenuated melanoma invasion and migration through autophagy-mediated AMPK-RhoA pathway. Finally, the overexpression of miR-23a prevented melanoma metastasis in vivo. Taken together, our findings demonstrate that the metastasis-associated miR-23a is not only a potential biomarker, but also a valuable therapeutic target for melanoma.


POU4F1 promotes the resistance of melanoma to BRAF inhibitors through MEK/ERK pathway activation and MITF up-regulation.

  • Lin Liu‎ et al.
  • Cell death & disease‎
  • 2020‎

BRAF inhibitors (BRAFi) have shown remarkable clinical efficacy in the treatment of melanoma with BRAF mutation. Nevertheless, most patients end up with the development of BRAFi resistance, which strongly limits the clinical application of these agents. POU4F1 is a stem cell-associated transcriptional factor that is highly expressed in melanoma cells and contributes to BRAF-activated malignant transformation. However, whether POU4F1 contributes to the resistance of melanoma to BRAFi remains poorly understood. Here, we report that over-expressed POU4F1 contributed to the acquired resistance of melanoma cells to Vemurafenib. Furthermore, POU4F1 promoted the activation of ERK signaling pathway via transcriptional regulation on MEK expression. In addition, POU4F1 could increase the expression of MITF to retain the resistance of melanoma cells to BRAFi. Collectively, our findings reveal that POU4F1 re-activates the MAPK pathway by transcriptional regulation on MEK expression and promotes MITF expression, which ultimately results in the resistance to BRAFi in melanoma. Our study supports that POU4F1 is a potential combined therapeutic target with BRAFi therapy for melanoma.


Long Non-Coding RNA CD27-AS1-208 Facilitates Melanoma Progression by Activating STAT3 Pathway.

  • Jingjing Ma‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Melanoma is the most lethal skin cancer that originates from epidermal melanocytes. Recently, long non-coding RNAs (lncRNAs) are emerging as critical regulators of cancer pathogenesis and potential therapeutic targets. However, the expression profile of lncRNAs and their role in melanoma progression have not been thoroughly investigated. Herein, we firstly obtained the expression profile of lncRNAs in primary melanomas using microarray analysis and unveiled the differentially-expressed lncRNAs compared with nevus. Subsequently, a series of bioinformatics analysis showed the great involvement of dysregulated lncRNAs in melanoma biology and immune response. Further, we identified lncRNA CD27-AS1-208 as a novel nuclear-localized factor with prominent facilitative role in melanoma cell proliferation, invasion and migration. Mechanistically, CD27-AS1-208 could directly interact with STAT3 and contribute to melanoma progression in a STAT3-dependent manner. Ultimately, the role of CD27-AS1-208 in melanoma progression in vivo was also investigated. Collectively, the present study offers us a new horizon to better understand the role of lncRNAs in melanoma pathogenesis and demonstrates that CD27-AS1-208 up-regulation contributes to melanoma progression by activating STAT3 pathway. Targeting CD27-AS1-208 in melanoma cells can be exploited as a potential therapeutic approach that needs forward validation in clinical trials in the future.


Real time imaging of single extracellular vesicle pH regulation in a microfluidic cross-flow filtration platform.

  • Vladimir Riazanski‎ et al.
  • Communications biology‎
  • 2022‎

Extracellular vesicles (EVs) are cell-derived membranous structures carrying transmembrane proteins and luminal cargo. Their complex cargo requires pH stability in EVs while traversing diverse body fluids. We used a filtration-based platform to capture and stabilize EVs based on their size and studied their pH regulation at the single EV level. Dead-end filtration facilitated EV capture in the pores of an ultrathin (100 nm thick) and nanoporous silicon nitride (NPN) membrane within a custom microfluidic device. Immobilized EVs were rapidly exposed to test solution changes driven across the backside of the membrane using tangential flow without exposing the EVs to fluid shear forces. The epithelial sodium-hydrogen exchanger, NHE1, is a ubiquitous plasma membrane protein tasked with the maintenance of cytoplasmic pH at neutrality. We show that NHE1 identified on the membrane of EVs is functional in the maintenance of pH neutrality within single vesicles. This is the first mechanistic description of EV function on the single vesicle level.


Growth and mineralization of osteoblasts from mesenchymal stem cells on microporous membranes: Epithelial-like growth with transmembrane resistance and pH gradient.

  • Quitterie C Larrouture‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Osteoblasts in vivo form an epithelial-like layer with tight junctions between cells. Bone formation involves mineral transport into the matrix and acid transport to balance pH levels. To study the importance of the pH gradient in vitro, we used Transwell inserts composed of polyethylene terephthalate (PET) membranes with 0.4 μm pores at a density of (2 ± 0.4) x 106 pores per cm2. Mesenchymal stem cells (MSCs) prepared from murine bone marrow were used to investigate alternative conditions whereby osteoblast differentiation would better emulate in vivo bone development. MSCs were characterized by flow cytometry with more than 90% CD44 and 75% Sca-1 labeling. Mineralization was validated with paracellular alkaline phosphatase activity, collagen birefringence, and mineral deposition confirming MSCs identity. We demonstrate that MSCs cultured and differentiated on PET inserts form an epithelial-like layer while mineralizing. Measurement of the transepithelial resistance was ∼1400 Ω•cm2 at three weeks of differentiation. The pH value of the media above and under the cells were measured while cells were in proliferation and differentiation. In mineralizing cells, a difference of 0.145 pH unit was observed between the medium above and under the cells indicating a transepithelial gradient. A significant difference in pH units was observed between the medium above and below the cells in proliferation compared to differentiation. Data on pH below membranes were confirmed by pH-dependent SNARF1 fluorescence. Control cells in proliferative medium did not form an epithelial-like layer, displayed low transepithelial resistance, and there was no significant pH gradient. By transmission electron microscopy, membrane attached osteoblasts in vitro had abundant mitochondria consistent with active transport that occurs in vivo by surface osteoblasts. In keeping with osteoblastic differentiation, scanning electron microscopy identified deposition of extracellular collagen surrounded by hydroxyapatite. This in vitro model is a major advancement in modeling bone in vivo for understanding of osteoblast bone matrix production.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: