Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 422 papers

Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma.

  • Houtan Noushmehr‎ et al.
  • Cancer cell‎
  • 2010‎

We have profiled promoter DNA methylation alterations in 272 glioblastoma tumors in the context of The Cancer Genome Atlas (TCGA). We found that a distinct subset of samples displays concerted hypermethylation at a large number of loci, indicating the existence of a glioma-CpG island methylator phenotype (G-CIMP). We validated G-CIMP in a set of non-TCGA glioblastomas and low-grade gliomas. G-CIMP tumors belong to the proneural subgroup, are more prevalent among lower-grade gliomas, display distinct copy-number alterations, and are tightly associated with IDH1 somatic mutations. Patients with G-CIMP tumors are younger at the time of diagnosis and experience significantly improved outcome. These findings identify G-CIMP as a distinct subset of human gliomas on molecular and clinical grounds.


Inferring regulatory element landscapes and transcription factor networks from cancer methylomes.

  • Lijing Yao‎ et al.
  • Genome biology‎
  • 2015‎

Recent studies indicate that DNA methylation can be used to identify transcriptional enhancers, but no systematic approach has been developed for genome-wide identification and analysis of enhancers based on DNA methylation. We describe ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify transcriptional targets. Transcription factor motif analysis of enhancers is coupled with expression analysis of transcription factors to infer upstream regulators. Using ELMER, we investigated more than 2,000 tumor samples from The Cancer Genome Atlas. We identified networks regulated by known cancer drivers such as GATA3 and FOXA1 (breast cancer), SOX17 and FOXA2 (endometrial cancer), and NFE2L2, SOX2, and TP63 (squamous cell lung cancer). We also identified novel networks with prognostic associations, including RUNX1 in kidney cancer. We propose ELMER as a powerful new paradigm for understanding the cis-regulatory interface between cancer-associated transcription factors and their functional target genes.


SERCaMP: a carboxy-terminal protein modification that enables monitoring of ER calcium homeostasis.

  • Mark J Henderson‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

Endoplasmic reticulum (ER) calcium homeostasis is disrupted in diverse pathologies, including neurodegeneration, cardiovascular diseases, and diabetes. Temporally defining calcium dysregulation during disease progression, however, has been challenging. Here we describe secreted ER calcium-monitoring proteins (SERCaMPs), which allow for longitudinal monitoring of ER calcium homeostasis. We identified a carboxy-terminal modification that is sufficient to confer release of a protein specifically in response to ER calcium depletion. A Gaussia luciferase (GLuc)-based SERCaMP provides a simple and sensitive method to monitor ER calcium homeostasis in vitro or in vivo by analyzing culture medium or blood. GLuc-SERCaMPs revealed ER calcium depletion in rat primary neurons exposed to various ER stressors. In vivo, ER calcium disruption in rat liver was monitored over several days by repeated sampling of blood. Our results suggest that SERCaMPs will have broad applications for the long-term monitoring of ER calcium homeostasis and the development of therapeutic approaches to counteract ER calcium dysregulation.


Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells.

  • Zheng Hu‎ et al.
  • BioMed research international‎
  • 2014‎

High-risk human papillomavirus (HR-HPV) has been recognized as a major causative agent for cervical cancer. Upon HPV infection, early genes E6 and E7 play important roles in maintaining malignant phenotype of cervical cancer cells. By using clustered regularly interspaced short palindromic repeats- (CRISPR-) associated protein system (CRISPR/Cas system), a widely used genome editing tool in many organisms, to target HPV16-E7 DNA in HPV positive cell lines, we showed for the first time that the HPV16-E7 single-guide RNA (sgRNA) guided CRISPR/Cas system could disrupt HPV16-E7 DNA at specific sites, inducing apoptosis and growth inhibition in HPV positive SiHa and Caski cells, but not in HPV negative C33A and HEK293 cells. Moreover, disruption of E7 DNA directly leads to downregulation of E7 protein and upregulation of tumor suppressor protein pRb. Therefore, our results suggest that HPV16-E7 gRNA guided CRISPR/Cas system might be used as a therapeutic strategy for the treatment of cervical cancer.


The somatic genomic landscape of chromophobe renal cell carcinoma.

  • Caleb F Davis‎ et al.
  • Cancer cell‎
  • 2014‎

We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations.


Altered default mode and fronto-parietal network subsystems in patients with schizophrenia and their unaffected siblings.

  • Xiao Chang‎ et al.
  • Brain research‎
  • 2014‎

The complex symptoms of schizophrenia have recently been linked to disrupted neural circuits and corresponding malfunction of two higher-order intrinsic brain networks: The default mode network (DMN) and the fronto-parietal network (FPN). These networks are both functionally heterogeneous and consist of multiple subsystems. However, the extent to which these subsystems make differential contributions to disorder symptoms and to what degree such abnormalities occur in unaffected siblings have yet to be clarified. We used resting-state functional MRI (rs-fMRI) to examine group differences in intra- and inter-connectivity of subsystems within the two neural networks, across a sample of patients with schizophrenia (n=24), their unaffected siblings (n=25), and healthy controls (n=22). We used group independent component analysis (gICA) to identify four network subsystems, including anterior and posterior portions of the DMN (aDMN, pDMN) as well as left- and right-lateralized portions of the FPN (lFPN, rFPN). Intra-connectivity is defined as neural coherence within a subsystem whereas inter-connectivity refers to functional connectivity between subsystems. In terms of intra-connectivity, patients and siblings shared dysconnection within the aDMN and two FPN subsystems, while both groups preserved connectivity within the pDMN. In terms of inter-connectivity, all groups exhibited positive connections between FPN and DMN subsystems, with patients having even stronger interaction between rFPN and aDMN than the controls, a feature that may underlie their psychotic symptoms. Our results implicate that DMN subsystems exhibit different liabilities to the disease risk while FPN subsystems demonstrate distinct inter-connectivity alterations. These dissociating manners between network subsystems explicitly suggest their differentiating roles to the disease susceptibility and manifestation.


Elevated acetyl-CoA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production.

  • Lina Yao‎ et al.
  • Plant biotechnology journal‎
  • 2017‎

Microalgal neutral lipids [mainly in the form of triacylglycerols (TAGs)], feasible substrates for biofuel, are typically accumulated during the stationary growth phase. To make microalgal biofuels economically competitive with fossil fuels, generating strains that trigger TAG accumulation from the exponential growth phase is a promising biological approach. The regulatory mechanisms to trigger TAG accumulation from the exponential growth phase (TAEP) are important to be uncovered for advancing economic feasibility. Through the inhibition of pyruvate dehydrogenase kinase by sodium dichloroacetate, acetyl-CoA level increased, resulting in TAEP in microalga Dunaliella tertiolecta. We further reported refilling of acetyl-CoA pool through branched-chain amino acid catabolism contributed to an overall sixfold TAEP with marginal compromise (4%) on growth in a TAG-rich D. tertiolecta mutant from targeted screening. Herein, a three-step α loop-integrated metabolic model is introduced to shed lights on the neutral lipid regulatory mechanism. This article provides novel approaches to compress lipid production phase and heightens lipid productivity and photosynthetic carbon capture via enhancing acetyl-CoA level, which would optimize renewable microalgal biofuel to fulfil the demanding fuel market.


Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study.

  • Hui Shen‎ et al.
  • Scientific reports‎
  • 2016‎

Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions.


Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

  • Peng Fang‎ et al.
  • PloS one‎
  • 2012‎

Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001) of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.


Hypothalamic proteoglycan syndecan-3 is a novel cocaine addiction resilience factor.

  • Jihuan Chen‎ et al.
  • Nature communications‎
  • 2013‎

Proteoglycans like syndecan-3 have complex signaling roles in addition to their function as structural components of the extracellular matrix. Here, we show that syndecan-3 in the lateral hypothalamus has an unexpected new role in limiting compulsive cocaine intake. In particular, we observe that syndecan-3 null mice self-administer greater amounts of cocaine than wild-type mice. This effect can be rescued by re-expression of syndecan-3 in the lateral hypothalamus with an adeno-associated viral vector. Adeno-associated viral vector delivery of syndecan-3 to the lateral hypothalamus also reduces motivation for cocaine in normal mice. Syndecan-3 limits cocaine intake by modulating the effects of glial-cell-line-derived neurotrophic factor, which uses syndecan-3 as an alternative receptor. Our findings indicate syndecan-3-dependent signaling as a novel therapeutic target for the treatment of cocaine addiction.


Gray Matter Loss and Related Functional Connectivity Alterations in A Chinese Family With Benign Adult Familial Myoclonic Epilepsy.

  • Ling-Li Zeng‎ et al.
  • Medicine‎
  • 2015‎

Benign adult familial myoclonic epilepsy (BAFME) is a non-progressive monogenic epilepsy syndrome. So far, the structural and functional brain reorganizations in BAFME remain uncharacterized. This study aims to investigate gray matter atrophy and related functional connectivity alterations in patients with BAFME using magnetic resonance imaging (MRI).Eleven BAFME patients from a Chinese pedigree and 15 matched healthy controls were enrolled in the study. Optimized voxel-based morphometric and resting-state functional MRI approaches were performed to measure gray matter atrophy and related functional connectivity, respectively. The Trail-Making Test-part A and part B, Digit Symbol Test (DST), and Verbal Fluency Test (VFT) were carried out to evaluate attention and executive functions.The BAFME patients exhibited significant gray matter loss in the right hippocampus, right temporal pole, left orbitofrontal cortex, and left dorsolateral prefrontal cortex. With these regions selected as seeds, the voxel-wise functional connectivity analysis revealed that the right hippocampus showed significantly enhanced connectivity with the right inferior parietal lobule, bilateral middle cingulate cortex, left precuneus, and left precentral gyrus. Moreover, the BAFME patients showed significant lower scores in DST and VFT tests compared with the healthy controls. The gray matter densities of the right hippocampus, right temporal pole, and left orbitofrontal cortex were significantly positively correlated with the DST scores. In addition, the gray matter density of the right temporal pole was significantly positively correlated with the VFT scores, and the gray matter density of the right hippocampus was significantly negatively correlated with the duration of illness in the patients.The current study demonstrates gray matter loss and related functional connectivity alterations in the BAFME patients, perhaps underlying deficits in attention and executive functions in the BAFME.


Changes in functional connectivity dynamics associated with vigilance network in taxi drivers.

  • Hui Shen‎ et al.
  • NeuroImage‎
  • 2016‎

An increasing number of neuroimaging studies have suggested that the fluctuations of low-frequency resting-state functional connectivity (FC) are not noise but are instead linked to the shift between distinct cognitive states. However, there is very limited knowledge about whether and how the fluctuations of FC at rest are influenced by long-term training and experience. Here, we investigated how the dynamics of resting-state FC are linked to driving behavior by comparing 20 licensed taxi drivers with 20 healthy non-drivers using a sliding window approach. We found that the driving experience could be effectively decoded with 90% (p<0.001) accuracy by the amplitude of low-frequency fluctuations in some specific connections, based on a multivariate pattern analysis technique. Interestingly, the majority of these connections fell within a set of distributed regions named "the vigilance network". Moreover, the decreased amplitude of the FC fluctuations within the vigilance network in the drivers was negatively correlated with the number of years that they had driven a taxi. Furthermore, temporally quasi-stable functional connectivity segmentation revealed significant differences between the drivers and non-drivers in the dwell time of specific vigilance-related transient brain states, although the brain's repertoire of functional states was preserved. Overall, these results suggested a significant link between the changes in the time-dependent aspects of resting-state FC within the vigilance network and long-term driving experiences. The results not only improve our understanding of how the brain supports driving behavior but also shed new light on the relationship between the dynamics of functional brain networks and individual behaviors.


Proteomics-based identification of VDAC1 as a tumor promoter in cervical carcinoma.

  • Changlin Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

We used oxidative isotope-coded affinity tags (OxICAT) to investigate the global redox status of proteins in human papillomavirus (HPV)-related cervical cancer cells, in order to identify a potential target for gene therapy. Voltage-dependent anion channel 1 (VDAC1) was found to be highly oxidized in HPV-positive cervical cancer cells. VDAC1 expression correlated significantly with the invasion of cervical cancer, the grade of cervical intraepithelial neoplasia (CIN) and the expression of HPV16 E7 in CIN. Knockdown of VDAC1 in cell lines increased the rate of apoptosis, while overexpression of the VDAC1 (respectively) partly reversed the effect. Thus, VDAC1 may promote the malignant progression of HPV-related disease, and treatments designed to suppress VDAC1 could prevent the progression of HPV-induced cervical disease.


Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines.

  • Sonia Afroz‎ et al.
  • eLife‎
  • 2016‎

Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal.


Impact of diabetes mellitus on the survival of pancreatic cancer: a meta-analysis.

  • Hui Shen‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Diabetes mellitus (DM) is a risk factor for pancreatic cancer (PC), but its prognostic value in PC is still unclear. To elucidate this issue, we systematically reviewed the evidence concerning the association between diabetes status and PC.


A bivariate genome-wide association study identifies ADAM12 as a novel susceptibility gene for Kashin-Beck disease.

  • Jingcan Hao‎ et al.
  • Scientific reports‎
  • 2016‎

Kashin-Beck disease (KBD) is a chronic osteoarthropathy, which manifests as joint deformities and growth retardation. Only a few genetic studies of growth retardation associated with the KBD have been carried out by now. In this study, we conducted a two-stage bivariate genome-wide association study (BGWAS) of the KBD using joint deformities and body height as study phenotypes, totally involving 2,417 study subjects. Articular cartilage specimens from 8 subjects were collected for immunohistochemistry. In the BGWAS, ADAM12 gene achieved the most significant association (rs1278300 p-value = 9.25 × 10(-9)) with the KBD. Replication study observed significant association signal at rs1278300 (p-value = 0.007) and rs1710287 (p-value = 0.002) of ADAM12 after Bonferroni correction. Immunohistochemistry revealed significantly decreased expression level of ADAM12 protein in the KBD articular cartilage (average positive chondrocyte rate = 47.59 ± 7.79%) compared to healthy articular cartilage (average positive chondrocyte rate = 64.73 ± 5.05%). Our results suggest that ADAM12 gene is a novel susceptibility gene underlying both joint destruction and growth retardation of the KBD.


Pubertal Expression of α4βδ GABAA Receptors Reduces Seizure-Like Discharges in CA1 Hippocampus.

  • Lie Yang‎ et al.
  • Scientific reports‎
  • 2016‎

More than half of children with epilepsy outgrow their seizures, yet the underlying mechanism is unknown. GABAergic inhibition increases at puberty in female mice due to expression of extrasynaptic α4βδ GABAA receptors (GABARs). Therefore, we tested the role of these receptors in regulating seizure-like discharges in CA1 hippocampus using a high K(+) (8.5 mM) seizure model. Spontaneous field potentials were recorded from hippocampus of pre-pubertal (~28-32 PND) and pubertal (~35-44 PND) female wild-type or α4-/- mice. The coastline length, a measure of burst intensity, was assessed. 8.5 mM K(+) induced seizure-like discharges in over 60% of pre-pubertal slices, but only in 7% of pubertal slices, where the coastline length was reduced by 70% (P = 0.04). However, the pubertal decrease in seizure-like discharges was not seen in the α4-/-, implicating α4βδ GABARs as the cause of the decreased seizure-like activity during puberty. Administration of THIP or DS2, to selectively increase α4βδ current, reduced activity in 8.5 mM K(+) at puberty, while blockade of α5-GABARs had no effect. GABAergic current was depolarizing but inhibitory in 8.5 mM K(+), suggesting a mechanism for the effects of α4βδ and α5-GABARs, which exhibit different polarity-dependent desensitization. These data suggest that α4βδ GABARs are anti-convulsant during adolescence.


Absolute quantification of somatic DNA alterations in human cancer.

  • Scott L Carter‎ et al.
  • Nature biotechnology‎
  • 2012‎

We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.


Knockout of the γ-aminobutyric acid receptor subunit α4 reduces functional δ-containing extrasynaptic receptors in hippocampal pyramidal cells at the onset of puberty.

  • Nicole Sabaliauskas‎ et al.
  • Brain research‎
  • 2012‎

Increased plasmalemmal localization of α4βδ GABA(A) receptors (GABARs) occurs in the hippocampal pyramidal cells of female mice at pubertal onset (Shen et al., 2010). This increase occurs on both dendritic spines and shafts of CA1 pyramidal cells and is in response to hormone fluctuations that occur at pubertal onset. However, little is known about how the α4 and δ subunits individually mediate the formation of functional, plasmalemmal α4βδ GABARs. To determine whether expression of the α4 subunit is necessary for plasmalemmal δ subunit localization at pubertal onset, electron microscopic-immunocytochemistry (EM-ICC) was employed. CA1 pyramidal cells of female α4 knockout (KO) mice were tested for plasmalemmal levels of the δ subunit within dendritic spine and shaft profiles at the onset of puberty. EM-ICC revealed that the α4 and δ subunits localize on dendritic spines and shafts at sites extrasynaptic to GABAergic input at pubertal onset in tissue of wild-type (WT) mice. At pubertal onset, plasmalemmal localization of the δ subunit is reduced 45.9% on dendritic spines, and 56.7% on dendritic shafts with KO of the α4 subunit, as compared to WT tissue, yet levels of intracellular δ immunoreactivity remain unchanged. The decline in plasmalemmal localization is manifested as decreased responsiveness to the GABA agonist gaboxadol at concentrations that are selective for δ-containing GABARs. Additionally, α4 KO mice have larger dendritic spine and shaft profiles. Our findings demonstrate that α4 subunit expression strongly influences the pubertal increase of δ subunits at the plasma membrane, and that genetic deletion of α4 serves as a functional knock-down of δ-containing GABARs.


Genome-scale discovery of DNA-methylation biomarkers for blood-based detection of colorectal cancer.

  • Christopher P E Lange‎ et al.
  • PloS one‎
  • 2012‎

There is an increasing demand for accurate biomarkers for early non-invasive colorectal cancer detection. We employed a genome-scale marker discovery method to identify and verify candidate DNA methylation biomarkers for blood-based detection of colorectal cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: