Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Digital image analysis allows objective stratification of patients with silent PIT1-lineage pituitary neuroendocrine tumors.

  • Jiangyan Zhao‎ et al.
  • The journal of pathology. Clinical research‎
  • 2023‎

Studies describing the clinical presentation and prognosis of patients with silent PIT1 (pituitary specific transcription factor)-lineage pituitary neuroendocrine tumors (PitNETs) are rare. We identified patients with positive PIT1 tumor staining but without evidence of hormone hypersecretion at a tertiary center. Clusters were obtained according to cell morphology and immunostaining from each patient's digitally segmented whole slide image. We compared the clinical presentations, radiological features, and prognoses of the different clusters. We identified 146 patients (68 male, 42.9 ± 14.1 years old) with silent PIT1-lineage PitNETs. Morphology clustering suggested that tumors with large nuclei and apparent eccentricity were associated with a higher proportion of aggressiveness and a higher hazard of recurrence [hazard ratio (HR): 2.64, (95% CI, 1.06-6.55), p = 0.037]. Immunohistochemical clustering suggested that tumors with thyroid stimulating hormone (TSH) staining or all negative PIT1-lineage hormones were associated with a higher proportion of aggressiveness and a higher risk of recurrence [HR: 12.4, (95% CI, 1.60-93.5), p = 0.015]. We obtained three-tier risk profiles by combining morphological and immunohistochemical clustering. Patients with the high-risk profile presented the highest recurrence rate compared with those in the medium-risk and low-risk profiles [HR: 3.54, (95% CI, 1.40-8.93), p = 0.002]. In conclusion, digital image analysis based on cell morphology and immunohistochemical staining allows objective stratification of patients with silent PIT1-lineage tumors. Typical morphological characteristics of high-risk tumors are large tumor nuclei and high eccentricity, and typical immunostaining characteristics are TSH staining or negative staining for all PIT1-lineage hormones.


Integrated proteogenomic characterization across major histological types of pituitary neuroendocrine tumors.

  • Fan Zhang‎ et al.
  • Cell research‎
  • 2022‎

Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors. Due to its extensive tumor heterogeneity and the lack of high-quality tissues for biomarker discovery, the causative molecular mechanisms are far from being fully defined. Therefore, more studies are needed to improve the current clinicopathological classification system, and advanced treatment strategies such as targeted therapy and immunotherapy are yet to be explored. Here, we performed the largest integrative genomics, transcriptomics, proteomics, and phosphoproteomics analysis reported to date for a cohort of 200 PitNET patients. Genomics data indicate that GNAS copy number gain can serve as a reliable diagnostic marker for hyperproliferation of the PIT1 lineage. Proteomics-based classification of PitNETs identified 7 clusters, among which, tumors overexpressing epithelial-mesenchymal transition (EMT) markers clustered into a more invasive subgroup. Further analysis identified potential therapeutic targets, including CDK6, TWIST1, EGFR, and VEGFR2, for different clusters. Immune subtyping to explore the potential for application of immunotherapy in PitNET identified an association between alterations in the JAK1-STAT1-PDL1 axis and immune exhaustion, and between changes in the JAK3-STAT6-FOS/JUN axis and immune infiltration. These identified molecular markers and alternations in various clusters/subtypes were further confirmed in an independent cohort of 750 PitNET patients. This proteogenomic analysis across traditional histological boundaries improves our current understanding of PitNET pathophysiology and suggests novel therapeutic targets and strategies.


Single-cell sequencing identifies differentiation-related markers for molecular classification and recurrence prediction of PitNET.

  • Qilin Zhang‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors with variable recurrence rate. Currently, the recurrence prediction is unsatisfying and can be improved by understanding the cellular origins and differentiation status. Here, to comprehensively reveal the origin of PitNET, we perform comparative analysis of single-cell RNA sequencing data from 3 anterior pituitary glands and 21 PitNETs. We identify distinct genes representing major subtypes of well and poorly differentiated PitNETs in each lineage. To further verify the predictive value of differentiation biomarkers, we include an independent cohort of 800 patients with an average follow-up of 7.2 years. In both PIT1 and TPIT lineages, poorly differentiated groups show significantly higher recurrence rates while well-differentiated groups show higher recurrence rates in SF1 lineage. Our findings reveal the possible origin and differentiation status of PitNET based on which new differentiation classification is proposed and verified to predict tumor recurrence.


Characterization of Somatotrope Cell Expansion in Response to GHRH in the Neonatal Mouse Pituitary.

  • Richard L Gonigam‎ et al.
  • Endocrinology‎
  • 2023‎

In humans and mice, loss-of-function mutations in growth hormone-releasing hormone receptor (GHRHR) cause isolated GH deficiency. The mutant GHRHR mouse model, GhrhrLit/Lit (LIT), exhibits loss of serum GH, but also fewer somatotropes. However, how loss of GHRH signaling affects expansion of stem and progenitor cells giving rise to GH-producing cells is unknown. LIT mice and wild-type littermates were examined for differences in proliferation and gene expression of pituitary lineage markers by quantitative reverse transcription polymerase chain reaction and immunohistochemistry at postnatal day 5 (p5) and 5 weeks. At p5, the LIT mouse shows a global decrease in pituitary proliferation measured by proliferation marker Ki67 and phospho-histone H3. This proliferative defect is seen in a pituitary cell expressing POU1F1 with or without GH. SOX9-positive progenitors show no changes in proliferation in p5 LIT mice. Additionally, the other POU1F1 lineage cells are not decreased in number; rather, we observe an increase in lactotrope cell population as well as messenger RNA for Tshb and Prl. In the 5-week LIT pituitary, the proliferative deficit in POU1F1-expressing cells observed neonatally persists, while the number and proliferative proportion of SOX9 cells do not appear changed. Treatment of cultured pituitary explants with GHRH promotes proliferation of POU1F1-expressing cells, but not GH-positive cells, in a mitogen-activated protein kinase-dependent manner. These findings indicate that hypothalamic GHRH targets proliferation of a POU1F1-positive cell, targeted to the somatotrope lineage, to fine tune their numbers.


The role of bone morphogenetic protein 4 in corneal injury repair.

  • Huicong Hu‎ et al.
  • Experimental eye research‎
  • 2021‎

Corneal injury may cause neovascularization and lymphangiogenesis in cornea which have a detrimental effect to vision and even lead to blindness. Bone morphogenetic protein 4 (BMP4) regulates a variety of biological processes, which is closely relevant to the regulation of corneal epithelium and angiogenesis. Herein, we aimed to evaluate the effect of BMP4 on corneal neovascularization (CNV), corneal lymphangiogenesis (CL), corneal epithelial repair, and the role of BMP4/Smad pathway in these processes.


Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma.

  • Qilin Zhang‎ et al.
  • Cell discovery‎
  • 2022‎

Skull base chordoma (SBC) is a bone cancer with a high recurrence rate, high radioresistance rate, and poorly understood mechanism. Here, we profiled the transcriptomes of 90,691 single cells, revealed the SBC cellular hierarchies, and explored novel treatment targets. We identified a cluster of stem-like SBC cells that tended to be distributed in the inferior part of the tumor. Combining radiated UM-Chor1 RNA-seq data and in vitro validation, we further found that this stem-like cell cluster is marked by cathepsin L (CTSL), a gene involved in the packaging of telomere ends, and may be responsible for radioresistance. Moreover, signatures related to partial epithelial-mesenchymal transition (p-EMT) were found to be significant in malignant cells and were related to the invasion and poor prognosis of SBC. Furthermore, YL-13027, a p-EMT inhibitor that acts through the TGF-β signaling pathway, demonstrated remarkable potency in inhibiting the invasiveness of SBC in preclinical models and was subsequently applied in a phase I clinical trial that enrolled three SBC patients. Encouragingly, YL-13027 attenuated the growth of SBC and achieved stable disease with no serious adverse events, underscoring the clinical potential for the precision treatment of SBC with this therapy. In summary, we conducted the first single-cell RNA sequencing of SBC and identified several targets that could be translated to the treatment of SBC.


Transcription Factor ASCL1 Acts as a Novel Potential Therapeutic Target for the Treatment of the Cushing's Disease.

  • Zhengyuan Chen‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

The pathogenesis of Cushing's disease (CD) is still not adequately understood despite the identification of somatic driver mutations in USP8, BRAF, and USP48. In this multiomics study, we combined RNA sequencing (RNA-seq) with Sanger sequencing to depict transcriptional dysregulation under different gene mutation backgrounds. Furthermore, we evaluated the potential of achaete-scute complex homolog 1 (ASCL1), a pioneer transcription factor, as a novel therapeutic target for treatment of CD and its possible downstream pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: