Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 77 papers

Atypical functional connectome hierarchy in autism.

  • Seok-Jun Hong‎ et al.
  • Nature communications‎
  • 2019‎

One paradox of autism is the co-occurrence of deficits in sensory and higher-order socio-cognitive processing. Here, we examined whether these phenotypical patterns may relate to an overarching system-level imbalance-specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Combining connectome gradient and stepwise connectivity analysis based on task-free functional magnetic resonance imaging (fMRI), we demonstrated atypical connectivity transitions between sensory and higher-order default mode regions in a large cohort of individuals with autism relative to typically-developing controls. Further analyses indicated that reduced differentiation related to perturbed stepwise connectivity from sensory towards transmodal areas, as well as atypical long-range rich-club connectivity. Supervised pattern learning revealed that hierarchical features predicted deficits in social cognition and low-level behavioral symptoms, but not communication-related symptoms. Our findings provide new evidence for imbalances in network hierarchy in autism, which offers a parsimonious reference frame to consolidate its diverse features.


Individual variation in intentionality in the mind-wandering state is reflected in the integration of the default-mode, fronto-parietal, and limbic networks.

  • Johannes Golchert‎ et al.
  • NeuroImage‎
  • 2017‎

Mind-wandering has a controversial relationship with cognitive control. Existing psychological evidence supports the hypothesis that episodes of mind-wandering reflect a failure to constrain thinking to task-relevant material, as well the apparently alternative view that control can facilitate the expression of self-generated mental content. We assessed whether this apparent contradiction arises because of a failure to consider differences in the types of thoughts that occur during mind-wandering, and in particular, the associated level of intentionality. Using multi-modal magnetic resonance imaging (MRI) analysis, we examined the cortical organisation that underlies inter-individual differences in descriptions of the spontaneous or deliberate nature of mind-wandering. Cortical thickness, as well as functional connectivity analyses, implicated regions relevant to cognitive control and regions of the default-mode network for individuals who reported high rates of deliberate mind-wandering. In contrast, higher reports of spontaneous mind-wandering were associated with cortical thinning in parietal and posterior temporal regions in the left hemisphere (which are important in the control of cognition and attention) as well as heightened connectivity between the intraparietal sulcus and a region that spanned limbic and default-mode regions in the ventral inferior frontal gyrus. Finally, we observed a dissociation in the thickness of the retrosplenial cortex/lingual gyrus, with higher reports of spontaneous mind-wandering being associated with thickening in the left hemisphere, and higher repots of deliberate mind-wandering with thinning in the right hemisphere. These results suggest that the intentionality of the mind-wandering state depends on integration between the control and default-mode networks, with more deliberation being associated with greater integration between these systems. We conclude that one reason why mind-wandering has a controversial relationship with control is because it depends on whether the thoughts emerge in a deliberate or spontaneous fashion.


Classifying the wandering mind: revealing the affective content of thoughts during task-free rest periods.

  • Anita Tusche‎ et al.
  • NeuroImage‎
  • 2014‎

Many powerful human emotional thoughts are generated in the absence of a precipitating event in the environment. Here, we tested whether we can decode the valence of internally driven, self-generated thoughts during task-free rest based on neural similarities with task-related affective mental states. We acquired functional magnetic resonance imaging (fMRI) data while participants generated positive and negative thoughts as part of an attribution task (Session A) and while they reported the occurrence of comparable mental states during task-free rest periods (Session B). With the use of multivariate pattern analyses (MVPA), we identified response patterns in the medial orbitofrontal cortex (mOFC) that encode the affective content of thoughts that are generated in response to an external experimental cue. Importantly, these task driven response patterns reliably predicted the occurrence of affective thoughts generated during unconstrained rest periods recorded one week apart. This demonstrates that at least certain elements of task-cued and task-free affective experiences rely on a common neural code. Furthermore, our findings reveal the role that the mOFC plays in determining the affective tone of unconstrained thoughts. More generally, our results suggest that MVPA is an important methodological tool for attempts to understand unguided subject driven mental states such as mind-wandering and daydreaming based on neural similarities with task-based experiences.


Impulse control and underlying functions of the left DLPFC mediate age-related and age-independent individual differences in strategic social behavior.

  • Nikolaus Steinbeis‎ et al.
  • Neuron‎
  • 2012‎

Human social exchange is often characterized by conflicts of interest requiring strategic behavior for their resolution. To investigate the development of the cognitive and neural mechanisms underlying strategic behavior, we studied children's decisions while they played two types of economic exchange games with differing demands of strategic behavior. We show an increase of strategic behavior with age, which could not be explained by age-related changes in social preferences but instead by developmental differences in impulsivity and associated brain functions of the left dorsolateral prefrontal cortex (DLPFC). Furthermore, observed differences in cortical thickness of lDLPFC were predictive of differences in impulsivity and strategic behavior irrespective of age. We conclude that egoistic behavior in younger children is not caused by a lack of understanding right or wrong, but by the inability to implement behavioral control when tempted to act selfishly; a function relying on brain regions maturing only late in ontogeny.


Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function.

  • Bo-Yong Park‎ et al.
  • NeuroImage‎
  • 2021‎

Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.


Neurocognitive patterns dissociating semantic processing from executive control are linked to more detailed off-task mental time travel.

  • Hao-Ting Wang‎ et al.
  • Scientific reports‎
  • 2020‎

Features of ongoing experience are common across individuals and cultures. However, certain people express specific patterns of thought to a greater extent than others. Contemporary psychological theory assumes that individual differences in thought patterns occur because different types of experience depend on the expression of different neurocognitive processes. Consequently, individual variation in the underlying neurocognitive architecture is hypothesised to determine the ease with which certain thought patterns are generated or maintained. Our study (N = 178) tested this hypothesis using multivariate pattern analysis to infer shared variance among measures of cognitive function and neural organisation and examined whether these latent variables explained reports of the patterns of on-going thoughts people experienced in the lab. We found that relatively better performance on tasks relying primarily on semantic knowledge, rather than executive control, was linked to a neural functional organisation associated, via meta-analysis, with task labels related to semantic associations (sentence processing, reading and verbal semantics). Variability of this functional mode predicted significant individual variation in the types of thoughts that individuals experienced in the laboratory: neurocognitive patterns linked to better performance at tasks that required guidance from semantic representation, rather than those dependent on executive control, were associated with patterns of thought characterised by greater subjective detail and a focus on time periods other than the here and now. These relationships were consistent across different days and did not vary with level of task demands, indicating they are relatively stable features of an individual's cognitive profile. Together these data confirm that individual variation in aspects of ongoing experience can be inferred from hidden neurocognitive architecture and demonstrate that performance trade-offs between executive control and long-term semantic knowledge are linked to a person's tendency to imagine situations that transcend the here and now.


Shared and distinct patterns of atypical cortical morphometry in children with autism and anxiety.

  • Shelly Yin‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2022‎

Autism spectrum disorder (ASD) and anxiety disorders (ANX) are common neurodevelopmental conditions with several overlapping symptoms. Notably, many children and adolescents with ASD also have an ANX diagnosis, suggesting shared pathological mechanisms. Here, we leveraged structural imaging and phenotypic data from 112 youth (33 ASD, 37 ANX, 42 typically developing controls) to assess shared and distinct cortical thickness patterns of the disorders. ANX was associated with widespread increases in cortical thickness, while ASD related to a mixed pattern of subtle increases and decreases across the cortical mantle. Despite the qualitative difference in the case-control contrasts, the statistical maps from the ANX-vs-controls and ASD-vs-controls analyses were significantly correlated when correcting for spatial autocorrelation. Dimensional analysis, regressing trait anxiety and social responsiveness against cortical thickness measures, partially recapitulated diagnosis-based findings. Collectively, our findings provide evidence for a common axis of neurodevelopmental disturbances as well as distinct effects of ASD and ANX on cortical thickness.


A Riemannian approach to predicting brain function from the structural connectome.

  • Oualid Benkarim‎ et al.
  • NeuroImage‎
  • 2022‎

Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules governing this relationship remain unknown. Emerging literature has suggested that functional interactions between brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic mechanism in the form of random walks on the structural connectome and predict functional interactions as a weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches and showed that performance plateaus approximately around the third random walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms in transmodal cortical networks compared to primary and unimodal systems.


Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy.

  • Bo-Yong Park‎ et al.
  • Brain : a journal of neurology‎
  • 2022‎

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Perceptual coupling and decoupling of the default mode network during mind-wandering and reading.

  • Meichao Zhang‎ et al.
  • eLife‎
  • 2022‎

While reading, our mind can wander to unrelated autobiographical information, creating a perceptually decoupled state detrimental to narrative comprehension. To understand how this mind-wandering state emerges, we asked whether retrieving autobiographical content necessitates functional disengagement from visual input. In Experiment 1, brain activity was recorded using functional magnetic resonance imaging (fMRI) in an experimental situation mimicking naturally occurring mind-wandering, allowing us to precisely delineate neural regions involved in memory and reading. Individuals read expository texts and ignored personally relevant autobiographical memories, as well as the opposite situation. Medial regions of the default mode network (DMN) were recruited during memory retrieval. In contrast, left temporal and lateral prefrontal regions of the DMN, as well as ventral visual cortex, were recruited when reading for comprehension. Experiment two used functional connectivity both at rest and during tasks to establish that (i) DMN regions linked to memory are more functionally decoupled from regions of ventral visual cortex than regions in the same network engaged when reading; and (ii) individuals with more self-generated mental contents and poorer comprehension, while reading in the lab, showed more decoupling between visually connected DMN sites important for reading and primary visual cortex. A similar pattern of connectivity was found in Experiment 1, with greater coupling between this DMN site and visual cortex when participants reported greater focus on reading in the face of conflict from autobiographical memory cues; moreover, the retrieval of personally relevant memories increased the decoupling of these sites. These converging data suggest we lose track of the narrative when our minds wander because generating autobiographical mental content relies on cortical regions within the DMN which are functionally decoupled from ventral visual regions engaged during reading.


Multiscale neural gradients reflect transdiagnostic effects of major psychiatric conditions on cortical morphology.

  • Bo-Yong Park‎ et al.
  • Communications biology‎
  • 2022‎

It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural contextualization of shared alterations of cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia). Our framework cross-referenced shared morphological anomalies with respect to cortical myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670 controls), we identified a cortex-wide dimension of morphological changes that described a sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across conditions. The shared disease dimension was closely related to cortical gradients of microstructure as well as neurotransmitter axes, specifically cortex-wide variations in serotonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to slight variations in analytical choices. Our findings embed shared effects of common psychiatric conditions on brain structure in multiple scales of brain organization, and may provide insights into neural mechanisms of transdiagnostic vulnerability.


Cerebral chemoarchitecture shares organizational traits with brain structure and function.

  • Benjamin Hänisch‎ et al.
  • eLife‎
  • 2023‎

Chemoarchitecture, the heterogeneous distribution of neurotransmitter transporter and receptor molecules, is a relevant component of structure-function relationships in the human brain. Here, we studied the organization of the receptome, a measure of interareal chemoarchitectural similarity, derived from positron-emission tomography imaging studies of 19 different neurotransmitter transporters and receptors. Nonlinear dimensionality reduction revealed three main spatial gradients of cortical chemoarchitectural similarity - a centro-temporal gradient, an occipito-frontal gradient, and a temporo-occipital gradient. In subcortical nuclei, chemoarchitectural similarity distinguished functional communities and delineated a striato-thalamic axis. Overall, the cortical receptome shared key organizational traits with functional and structural brain anatomy, with node-level correspondence to functional, microstructural, and diffusion MRI-based measures decreasing along a primary-to-transmodal axis. Relative to primary and paralimbic regions, unimodal and heteromodal regions showed higher receptomic diversification, possibly supporting functional flexibility.


Variation in spatial dependencies across the cortical mantle discriminates the functional behaviour of primary and association cortex.

  • Robert Leech‎ et al.
  • Nature communications‎
  • 2023‎

Recent theories of cortical organisation suggest features of function emerge from the spatial arrangement of brain regions. For example, association cortex is located furthest from systems involved in action and perception. Association cortex is also 'interdigitated' with adjacent regions having different patterns of functional connectivity. It is assumed that topographic properties, such as distance between regions, constrains their functions, however, we lack a formal description of how this occurs. Here we use variograms, a quantification of spatial autocorrelation, to profile how function changes with the distance between cortical regions. We find function changes with distance more gradually within sensory-motor cortex than association cortex. Importantly, systems within the same type of cortex (e.g., fronto-parietal and default mode networks) have similar profiles. Primary and association cortex, therefore, are differentiated by how function changes over space, emphasising the value of topographical features of a region when estimating its contribution to cognition and behaviour.


The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity.

  • Amin Saberi‎ et al.
  • PLoS biology‎
  • 2023‎

The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.


Tracking mood fluctuations with functional network patterns.

  • Nykan Mirchi‎ et al.
  • Social cognitive and affective neuroscience‎
  • 2019‎

Subjective mood is a psychophysiological property that depends on complex interactions among the central and peripheral nervous systems. How network interactions in the brain drive temporal fluctuations in mood is unknown. Here we investigate how functional network configuration relates to mood profiles in a single individual over the course of 1 year. Using data from the 'MyConnectome Project', we construct a comprehensive mapping between resting-state functional connectivity (FC) patterns and subjective mood scales using an associative multivariate technique (partial least squares). We report three principal findings. First, FC patterns reliably tracked daily fluctuations in mood. Second, positive mood was marked by an integrated architecture, with prominent interactions between canonical resting-state networks. Finally, one of the top-ranked nodes in mood-related network reconfiguration was the subgenual anterior cingulate cortex, an area commonly associated with mood regulation and dysregulation. Altogether, these results showcase the utility of highly sampled individual-focused data sets for affective neuroscience.


Antiepileptic Drug of Levetiracetam Decreases Centrotemporal Spike-Associated Activation in Rolandic Epilepsy.

  • Qirui Zhang‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

The objective was to study the modulation effects of levetiracetam on the fMRI activation/deactivation patterns associated with centrotemporal spikes (CTS) in Rolandic epilepsy. Forty patients with Rolandic epilepsy, including levetiracetam-medicated patients (n = 20) and drug-naive patients (n = 20), were studied. Single and sequential hemodynamic response functions-based EEG-fMRI analysis was performed to detect dynamic activation/deactivation associated with CTS. Comparisons of spatiotemporal features of activation/deactivation were performed between the two groups. Both the groups (CTS were detected in 12 cases of levetiracetam-medicated group, and 11 cases of drug-naive group) showed CTS-associated activation in the Rolandic cortex, whereas activation strength, time-to-peak delay, and overall activation were diminished in the levetiracetam-medicated group. Moreover, the drug-naive group showed deactivation in the regions engaged in higher cognition networks compared with the levetiracetam-medicated group. Levetiracetam inhibits CTS-associated activation intensity and alters the temporal pattern of this activation in the epileptogenic regions, and it also affects the brain deactivation related to higher cognition networks. The findings sheds a light on the pharmocological mechanism of levetiracetam therapy on Rolandic epilepsy.


Multi-contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset.

  • Jessie Kulaga-Yoskovitz‎ et al.
  • Scientific data‎
  • 2015‎

The hippocampus is composed of distinct anatomical subregions that participate in multiple cognitive processes and are differentially affected in prevalent neurological and psychiatric conditions. Advances in high-field MRI allow for the non-invasive identification of hippocampal substructure. These approaches, however, demand time-consuming manual segmentation that relies heavily on anatomical expertise. Here, we share manual labels and associated high-resolution MRI data (MNI-HISUB25; submillimetric T1- and T2-weighted images, detailed sequence information, and stereotaxic probabilistic anatomical maps) based on 25 healthy subjects. Data were acquired on a widely available 3 Tesla MRI system using a 32 phased-array head coil. The protocol divided the hippocampal formation into three subregions: subicular complex, merged Cornu Ammonis 1, 2 and 3 (CA1-3) subfields, and CA4-dentate gyrus (CA4-DG). Segmentation was guided by consistent intensity and morphology characteristics of the densely myelinated molecular layer together with few geometry-based boundaries flexible to overall mesiotemporal anatomy, and achieved excellent intra-/inter-rater reliability (Dice index ≥90/87%). The dataset can inform neuroimaging assessments of the mesiotemporal lobe and help to develop segmentation algorithms relevant for basic and clinical neurosciences.


Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy.

  • Boris C Bernhardt‎ et al.
  • NeuroImage‎
  • 2008‎

Temporal lobe epilepsy (TLE) is considered primarily a limbic disorder. Our purpose was to map limbic network organization in TLE and to statistically relate it to neocortical atrophy. We performed MRI-based cortical thickness analysis in 110 TLE patients (including 68 patients with hippocampal atrophy and 42 patients with normal hippocampal volume) and 46 healthy controls. Limbic connectivity was statistically inferred by correlating mean thickness of the entorhinal cortex (EC) with thickness at each vertex across the entire neocortex. The EC was chosen as seed region since it is the link between the neocortex and the hippocampal formation. Patients showed cortical thinning mainly in temporal and fronto-central neocortices, with a prevalence of atrophy in up to 35%. In controls, EC networks corresponded closely to known anatomical connections. In TLE the pattern of correlations was similar to controls, suggesting that pathological processes in the EC affect the same networks that co-vary with the EC in the healthy brain. Nevertheless, we found decreases in correlations mainly in the temporal lobe and increases mainly in orbitofrontal cortices. Although our analysis indicated alterations in the temporo-limbic network in TLE, there was no association between mesiotemporal connectivity and atrophy across the entire cortical surface. This divergence underlines the complexity of the pathophysiological mechanisms leading to neocortical atrophy in TLE.


Adolescent development of multiscale structural wiring and functional interactions in the human connectome.

  • Bo-Yong Park‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Population heterogeneity in clinical cohorts affects the predictive accuracy of brain imaging.

  • Oualid Benkarim‎ et al.
  • PLoS biology‎
  • 2022‎

Brain imaging research enjoys increasing adoption of supervised machine learning for single-participant disease classification. Yet, the success of these algorithms likely depends on population diversity, including demographic differences and other factors that may be outside of primary scientific interest. Here, we capitalize on propensity scores as a composite confound index to quantify diversity due to major sources of population variation. We delineate the impact of population heterogeneity on the predictive accuracy and pattern stability in 2 separate clinical cohorts: the Autism Brain Imaging Data Exchange (ABIDE, n = 297) and the Healthy Brain Network (HBN, n = 551). Across various analysis scenarios, our results uncover the extent to which cross-validated prediction performances are interlocked with diversity. The instability of extracted brain patterns attributable to diversity is located preferentially in regions part of the default mode network. Collectively, our findings highlight the limitations of prevailing deconfounding practices in mitigating the full consequences of population diversity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: