Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar.

  • Aye A Win‎ et al.
  • Malaria journal‎
  • 2016‎

Artemisinin-based combination therapy has been first-line treatment for falciparum malaria in Myanmar since 2005. The wide extent of artemisinin resistance in the Greater Mekong sub-region and the presence of mefloquine resistance at the Myanmar-Thailand border raise concerns over resistance patterns in Myanmar. The availability of molecular markers for resistance to both drugs enables assessment even in remote malaria-endemic areas.


Epidemiology of Plasmodium vivax Malaria Infection in Nepal.

  • Komal Raj Rijal‎ et al.
  • The American journal of tropical medicine and hygiene‎
  • 2018‎

Malaria is endemic in the southern plain of Nepal which shares a porous border with India. More than 80% cases of malaria in Nepal are caused by Plasmodium vivax. The main objective of this study was to review the epidemiology of P. vivax malaria infections as recorded by the national malaria control program of Nepal between 1963 and 2016. National malaria data were retrieved from the National Malaria program in the Ministry of Health, Government of Nepal. The epidemiological trends and malariometric indicators were analyzed. Vivax malaria has predominated over falciparum malaria in the past 53 years, with P. vivax malaria comprising 70-95% of the annual malaria infections. In 1985, a malaria epidemic occurred with 42,321 cases (82% P. vivax and 17% Plasmodium falciparum). Nepal had experienced further outbreaks of malaria in 1991 and 2002. Plasmodium falciparum cases increased from 2005 to 2010 but since then declined. Analyzing the overall trend between 2002 (12,786 cases) until 2016 (1,009 cases) shows a case reduction by 92%. The proportion of imported malaria cases has increased from 18% of cases in 2001 to 50% in 2016. The current trends of malariometric indices indicate that Nepal is making a significant progress toward achieving the goal of malaria elimination by 2025. Most of the cases are caused by P. vivax with imported malaria comprising an increasing proportion of cases. The malaria control program in Nepal needs to counter importation of malaria at high risk areas with collaborative cross border malaria control activities.


Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin-piperaquine in healthy volunteers.

  • Palang Chotsiri‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

The aims of the present study were to evaluate the pharmacokinetic properties of dihydroartemisinin (DHA) and piperaquine, potential drug-drug interactions with concomitant primaquine treatment, and piperaquine effects on the electrocardiogram in healthy volunteers.


Genetic surveillance in the Greater Mekong subregion and South Asia to support malaria control and elimination.

  • Christopher G Jacob‎ et al.
  • eLife‎
  • 2021‎

National Malaria Control Programmes (NMCPs) currently make limited use of parasite genetic data. We have developed GenRe-Mekong, a platform for genetic surveillance of malaria in the Greater Mekong Subregion (GMS) that enables NMCPs to implement large-scale surveillance projects by integrating simple sample collection procedures in routine public health procedures.


Cardiovascular concentration-effect relationships of amodiaquine and its metabolite desethylamodiaquine: Clinical and preclinical studies.

  • Xin Hui S Chan‎ et al.
  • British journal of clinical pharmacology‎
  • 2023‎

Amodiaquine is a 4-aminoquinoline used extensively for the treatment and prevention of malaria. Orally administered amodiaquine is largely converted to the active metabolite desethylamodiaquine. Amodiaquine can cause bradycardia, hypotension, and electrocardiograph QT interval prolongation, but the relationship of these changes to drug concentrations is not well characterized.


Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data.

  • Xin Hui S Chan‎ et al.
  • PLoS medicine‎
  • 2020‎

Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria.


High-Dose Primaquine Induces Proximal Tubular Degeneration and Ventricular Cardiomyopathy Linked to Host Cells Mitochondrial Dysregulation.

  • Atthasit Rabiablok‎ et al.
  • Toxics‎
  • 2023‎

Primaquine (PQ) is the only antimalarial medication used to eradicate many species of Plasmodium gametocytes and prevent relapse in vivax and ovale malarias. PQ metabolites induce oxidative stress and impair parasitic mitochondria, leading to protozoal growth retardation and death. Collateral damage is also presented in mammalian host cells, particularly erythrocytes, resulting in hemolysis and tissue destruction. However, the underlying mechanisms of these complications, particularly the mitochondria-mediated cell death of the host, are poorly understood. In the present study, toxicopathological studies were conducted on a rat model to determine the effect of PQ on affected tissues and mitochondrial toxicity. The results indicated that the LD50 for PQ is 200 mg/kg. A high dose of PQ induced hemolytic anemia, elevated a hepatic enzyme (SGPT), and induced proximal tubular degeneration, ventricular cardiomyopathy, and mitochondrial dysregulation. In addition, PQ induced the upregulation of apoptosis-related proteins Drp-1 and caspase-3, with a positive correlation, as well as the pro-apoptotic mitochondrial gene expression of Bax, reflecting the toxic effect of high doses of PQ on cellular damage and mitochondrial apoptosis in terms of hepatotoxicity, nephrotoxicity, and cardiotoxicity. Regarding the risk/benefit ratio of drug administration, our research provides caution for the use of PQ in the treatment of malaria based on its toxicopathological effects.


Advances and roadblocks in the treatment of malaria.

  • Borimas Hanboonkunupakarn‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

The deployment of artesunate for severe malaria and the artemisinin combination therapies (ACTs) for uncomplicated malaria has been a major advance in antimalarial therapeutics. These drugs have reduced treated mortality, accelerated recovery and reduced treatment failure rates and transmission from the treated infection. Artemisinin derivatives remain highly effective against falciparum malaria in most malaria endemic areas, but significant resistance has emerged in the Greater Mekong subregion of Southeast Asia. Resistance to artemisinins was followed by resistance to the ACT partner drugs, and fit multidrug resistant parasite lineages have now spread widely across the region. ACTs remain highly effective against P. vivax and the other malaria species. Recent studies have shown that radical curative regimens of primaquine (to prevent relapse) can be shortened to 7 days, and that the newly introduced single dose tafenoquine is an alternative, although the currently recommended dose is insufficient in Southeast Asia and Oceania. Targeted malaria elimination using focal mass treatments with dihydroartemisinin-piperaquine have proved safe and effective malaria elimination accelerators, but progress overall towards malaria elimination is slow. Indeed since 2015 overall malaria case numbers globally have risen. As new drugs will not become widely available in the near future, active measures to preserve the current antimalarials should be given the highest priority.


Mass drug administrations with dihydroartemisinin-piperaquine and single low dose primaquine to eliminate Plasmodium falciparum have only a transient impact on Plasmodium vivax: Findings from randomised controlled trials.

  • Koukeo Phommasone‎ et al.
  • PloS one‎
  • 2020‎

Mass administrations of antimalarial drugs (MDA) have reduced the incidence and prevalence of P. falciparum infections in a trial in the Greater Mekong Subregion. Here we assess the impact of the MDA on P. vivax infections.


Pharmacometrics of high-dose ivermectin in early COVID-19 from an open label, randomized, controlled adaptive platform trial (PLATCOV).

  • William H K Schilling‎ et al.
  • eLife‎
  • 2023‎

There is no generally accepted methodology for in vivo assessment of antiviral activity in SARS-CoV-2 infections. Ivermectin has been recommended widely as a treatment of COVID-19, but whether it has clinically significant antiviral activity in vivo is uncertain.


High levels of pathological jaundice in the first 24 hours and neonatal hyperbilirubinaemia in an epidemiological cohort study on the Thailand-Myanmar border.

  • Laurence Thielemans‎ et al.
  • PloS one‎
  • 2021‎

Population risks for neonatal hyperbilirubinaemia (NH) vary. Knowledge of local risks permits interventions that may reduce the proportion becoming severe. Between January 2015 and May 2016, in a resource-limited setting on the Thailand-Myanmar border, neonates from 28 weeks' gestation were enrolled into a prospective birth cohort. Each neonate had total serum bilirubin measurements: scheduled (24, 48, 72 and 144 hours of life) and clinically indicated; and weekly follow up until 1 month of age. Risk factors for developing NH were evaluated using Cox proportional hazard mixed model. Of 1710 neonates, 22% (376) developed NH (83% preterm, 19% term). All neonates born <35 weeks, four in five born 35-37 weeks, and three in twenty born ≥38 weeks had NH, giving an overall incidence of 249 per 1000 livebirths [95%CI 225, 403]. Mortality from acute bilirubin encephalopathy was 10% (2/20) amongst the 5.3% (20/376) who reached the severe NH threshold. One-quarter (26.3%) of NH occurred within 24 hours. NH onset varied with gestational age: at a median [IQR] 24 hours [24, 30] for neonates born 37 weeks or prematurely vs 59 hours [48, 84] for neonates born ≥38 weeks. Risk factors for NH in the first week of life independent of gestational age were: neonatal G6PD deficiency, birth bruising, Sgaw Karen ethnicity, primigravidae, pre-eclampsia, and prolonged rupture of membranes. The genetic impact of G6PD deficiency on NH was partially interpreted by using the florescent spot test and further genotyping work is in progress. The risk of NH in Sgaw Karen refugees may be overlooked internationally as they are most likely regarded as Burmese in countries of resettlement. Given high levels of pathological jaundice in the first 24 hours and overall high NH burden, guidelines changes were implemented including preventive PT for all neonates <35 weeks and for those 35-37 weeks with risk factors.


Ivermectin metabolites reduce Anopheles survival.

  • Kevin C Kobylinski‎ et al.
  • Scientific reports‎
  • 2023‎

Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. The mosquito-lethal effect of ivermectin in clinical trials exceeds that predicted from in vitro laboratory experiments, suggesting that ivermectin metabolites have mosquito-lethal effect. The three primary ivermectin metabolites in humans (i.e., M1 (3″-O-demethyl ivermectin), M3 (4-hydroxymethyl ivermectin), and M6 (3″-O-demethyl, 4-hydroxymethyl ivermectin) were obtained by chemical synthesis or bacterial modification/metabolism. Ivermectin and its metabolites were mixed in human blood at various concentrations, blood-fed to Anopheles dirus and Anopheles minimus mosquitoes, and mortality was observed daily for fourteen days. Ivermectin and metabolite concentrations were quantified by liquid chromatography linked with tandem mass spectrometry to confirm the concentrations in the blood matrix. Results revealed that neither the LC50 nor LC90 values differed between ivermectin and its major metabolites for An. dirus or An. minimus., Additionally, there was no substantial differences in the time to median mosquito mortality when comparing ivermectin and its metabolites, demonstrating an equal rate of mosquito killing between the compounds evaluated. These results demonstrate that ivermectin metabolites have a mosquito-lethal effect equal to the parent compound, contributing to Anopheles mortality after treatment of humans.


Open-label crossover study of primaquine and dihydroartemisinin-piperaquine pharmacokinetics in healthy adult thai subjects.

  • Borimas Hanboonkunupakarn‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2014‎

Dihydroartemisinin-piperaquine is an artemisinin-based combination treatment (ACT) recommended by the WHO for uncomplicated Plasmodium falciparum malaria, and it is being used increasingly for resistant vivax malaria where combination with primaquine is required for radical cure. The WHO recently reinforced its recommendations to add a single dose of primaquine to ACTs to reduce P. falciparum transmission in low-transmission settings. The pharmacokinetics of primaquine and dihydroartemisinin-piperaquine were evaluated in 16 healthy Thai adult volunteers in a randomized crossover study. Volunteers were randomized to two groups of three sequential hospital admissions to receive 30 mg (base) primaquine, 3 tablets of dihydroartemisinin-piperaquine (120/960 mg), and the drugs together at the same doses. Blood sampling was performed over 3 days following primaquine and 36 days following dihydroartemisinin-piperaquine dosing. Pharmacokinetic assessment was done with a noncompartmental approach. The drugs were well tolerated. There were no statistically significant differences in dihydroartemisinin and piperaquine pharmacokinetics with or without primaquine. Dihydroartemisinin-piperaquine coadministration significantly increased plasma primaquine levels; geometric mean ratios (90% confidence interval [CI]) of primaquine combined versus primaquine alone for maximum concentration (Cmax), area under the concentration-time curve from 0 h to the end of the study (AUC0-last), and area under the concentration-time curve from 0 h to infinity (AUC0-∞) were 148% (117 to 187%), 129% (103 to 163%), and 128% (102 to 161%), respectively. This interaction is similar to that described recently with chloroquine and may result in an enhanced radical curative effect. (This study has been registered at ClinicalTrials.gov under registration no. NCT01525511.).


Genetic Diversity of Dengue Virus in Clinical Specimens from Bangkok, Thailand, during 2018-2020: Co-Circulation of All Four Serotypes with Multiple Genotypes and/or Clades.

  • Kanaporn Poltep‎ et al.
  • Tropical medicine and infectious disease‎
  • 2021‎

Dengue is an arboviral disease highly endemic in Bangkok, Thailand. To characterize the current genetic diversity of dengue virus (DENV), we recruited patients with suspected DENV infection at the Hospital for Tropical Diseases, Bangkok, during 2018-2020. We determined complete nucleotide sequences of the DENV envelope region for 111 of 276 participant serum samples. All four DENV serotypes were detected, with the highest proportion being DENV-1. Although all DENV-1 sequences were genotype I, our DENV-1 sequences were divided into four distinct clades with different distributions in Asian countries. Two genotypes of DENV-2 were identified, Asian I and Cosmopolitan, which were further divided into two and three distinct clades, respectively. In DENV-3, in addition to the previously dominant genotype III, a cluster of 6 genotype I viruses only rarely reported in Thailand was also observed. All of the DENV-4 viruses belonged to genotype I, but they were separated into three distinct clades. These results indicated that all four serotypes of DENV with multiple genotypes and/or clades co-circulate in Bangkok. Continuous investigation of DENV is warranted to further determine the relationship between DENV within Thailand and neighboring countries in Southeast Asia and Asia.


Limitations of malaria reactive case detection in an area of low and unstable transmission on the Myanmar-Thailand border.

  • Daniel M Parker‎ et al.
  • Malaria journal‎
  • 2016‎

Reactive case detection is an approach that has been proposed as a tool for malaria elimination in low-transmission settings. It is an intuitively justified approach based on the concept of space-time clustering of malaria cases. When an index malaria clinical case is detected, it triggers reactive screening and treatment in the index house and neighbouring houses. However, the efficacy of this approach at varying screening radii and malaria prevalence remains ill defined.


Video-based feedback as a method for training rural healthcare workers to manage medical emergencies: a pilot study.

  • Zainab Oseni‎ et al.
  • BMC medical education‎
  • 2017‎

Video-based feedback has been shown to aid knowledge retention, skills learning and improve team functionality. We explored the use of video-based feedback and low fidelity simulation for training rural healthcare workers along the Thailand-Myanmar border and Papua New Guinea (PNG) to manage medical emergencies effectively.


Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults.

  • Borimas Hanboonkunupakarn‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2019‎

Artemisinin-based combination therapies (ACTs) have contributed substantially to the global decline in Plasmodium falciparum morbidity and mortality, but resistance to artemisinins and their partner drugs is increasing in Southeast Asia, threatening malaria control. New antimalarial compounds will not be generally available soon. Combining three existing antimalarials in the form of triple ACTs, including dihydroartemisinin (DHA)-piperaquine + mefloquine, is a potential treatment option for multidrug-resistant Plasmodium falciparum malaria. In a sequential open-label study, healthy Thai volunteers were treated with DHA-piperaquine (120 to 960 mg), mefloquine (500 mg), and DHA-piperaquine + mefloquine (120 to 960 mg + 500 mg), and serial symptom questionnaires, biochemistry, full blood counts, pharmacokinetic profiles, and electrocardiographic measurements were performed. Fifteen healthy subjects were enrolled. There was no difference in the incidence or severity of adverse events between the three treatment arms. The slight prolongation in QTc (QT interval corrected for heart rate) associated with DHA-piperaquine administration did not increase after administration of DHA-piperaquine + mefloquine. The addition of mefloquine had no significant effect on the pharmacokinetic properties of piperaquine. However, coadministration of mefloquine significantly reduced the exposures to dihydroartemisinin for area under the concentration-time curve (-22.6%; 90% confidence interval [CI], -33.1, -10.4; P = 0.0039) and maximum concentration of drug in serum (-29.0%; 90% CI, -40.6, -15.1; P = 0.0079). Mefloquine can be added safely to dihydroartemisinin-piperaquine in malaria treatment. (This study has been registered at ClinicalTrials.gov under identifier NCT02324738.).


Identification of the metabolites of ivermectin in humans.

  • Phornpimon Tipthara‎ et al.
  • Pharmacology research & perspectives‎
  • 2021‎

Mass drug administration of ivermectin has been proposed as a possible malaria elimination tool. Ivermectin exhibits a mosquito-lethal effect well beyond its biological half-life, suggesting the presence of active slowly eliminated metabolites. Human liver microsomes, primary human hepatocytes, and whole blood from healthy volunteers given oral ivermectin were used to identify ivermectin metabolites by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. The molecular structures of metabolites were determined by mass spectrometry and verified by nuclear magnetic resonance. Pure cytochrome P450 enzyme isoforms were used to elucidate the metabolic pathways. Thirteen different metabolites (M1-M13) were identified after incubation of ivermectin with human liver microsomes. Three (M1, M3, and M6) were the major metabolites found in microsomes, hepatocytes, and blood from volunteers after oral ivermectin administration. The chemical structure, defined by LC-MS/MS and NMR, indicated that M1 is 3″-O-demethyl ivermectin, M3 is 4-hydroxymethyl ivermectin, and M6 is 3″-O-demethyl, 4-hydroxymethyl ivermectin. Metabolic pathway evaluations with characterized cytochrome P450 enzymes showed that M1, M3, and M6 were produced primarily by CYP3A4, and that M1 was also produced to a small extent by CYP3A5. Demethylated (M1) and hydroxylated (M3) ivermectin were the main human in vivo metabolites. Further studies are needed to characterize the pharmacokinetic properties and mosquito-lethal activity of these metabolites.


Culturally responsive research ethics: How the socio-ethical norms of Arr-nar/Kreng-jai inform research participation at the Thai-Myanmar border.

  • Napat Khirikoekkong‎ et al.
  • PLOS global public health‎
  • 2023‎

Despite advances, international research ethics guidelines still tend to consist of high-level ethical principles reflecting residual influence from North American and European traditions of ethics. Local ethics committees and community advisory boards can offer more culturally-sensitive approaches to training but most institutions lack substantive practical ethics guidance to engage rich moral understandings in day-to-day research practice in diverse cultural contexts. To address this gap, we conducted an international series of qualitative research ethics case studies, linked prospectively to active research programs in diverse settings. Here, we share findings from two case studies with a research team working on malaria and hepatitis B prevention with pregnant women in clinics serving migrants along the Thai-Myanmar border. In this sociocultural ethical analysis, we consider how core ethical requirements of voluntary participation, provision of fair benefits, and understandings of research risks and burdens are shaped, enriched, and in some instances challenged, by deep-seated and widespread Burmese, Karen and Thai cultural norms known as Arr-nar (in Burmese and Karen) or Kreng-jai (in Thai), encompassing multiple meanings including consideration for others and graciousness. We offer a model illustrating how one might map ethically significant sociocultural influences across the research practice pathway and close with lessons for developing a more culturally responsive research ethics practice in other international settings.


The impact of targeted malaria elimination with mass drug administrations on falciparum malaria in Southeast Asia: A cluster randomised trial.

  • Lorenz von Seidlein‎ et al.
  • PLoS medicine‎
  • 2019‎

The emergence and spread of multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion (GMS) threatens global malaria elimination efforts. Mass drug administration (MDA), the presumptive antimalarial treatment of an entire population to clear the subclinical parasite reservoir, is a strategy to accelerate malaria elimination. We report a cluster randomised trial to assess the effectiveness of dihydroartemisinin-piperaquine (DP) MDA in reducing falciparum malaria incidence and prevalence in 16 remote village populations in Myanmar, Vietnam, Cambodia, and the Lao People's Democratic Republic, where artemisinin resistance is prevalent.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: