Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

Prolonged use of a proton pump inhibitor reduces microbial diversity: implications for Clostridium difficile susceptibility.

  • Charlie T Seto‎ et al.
  • Microbiome‎
  • 2014‎

The role of the gut microbiome in arresting pathogen colonization and growth is important for protection against Clostridium difficile infection (CDI). Observational studies associate proton pump inhibitor (PPI) use and CDI incidence. We hypothesized that PPI use affected the distal gut microbiome over time, an effect that would be best explored by time-longitudinal study of healthy subjects on PPI in comparison to treatment-naïve CDI subjects. This study enrolled nine healthy human subjects and five subjects with treatment-naïve CDI. After random assignment to a low (20 mg/day) or high (2× 20 mg/day) dose group, fecal samples were collected from the nine healthy subjects before, during, and after 28 days of PPI use. This was done in conjunction with pre-treatment fecal collection from CDI subjects. High-throughput sequencing (16S rRNA) was performed on time-longitudinal samples to assess changes to the healthy gut microbiome associated with prolonged PPI usage. The healthy samples were then compared to the CDI subjects to explore changes over time to the gut microbiome associated with PPI use and potentially related to CDI.


IM-TORNADO: a tool for comparison of 16S reads from paired-end libraries.

  • Patricio Jeraldo‎ et al.
  • PloS one‎
  • 2014‎

16S rDNA hypervariable tag sequencing has become the de facto method for accessing microbial diversity. Illumina paired-end sequencing, which produces two separate reads for each DNA fragment, has become the platform of choice for this application. However, when the two reads do not overlap, existing computational pipelines analyze data from read separately and underutilize the information contained in the paired-end reads.


Altered gut microbiota in female mice with persistent low body weights following removal of post-weaning chronic dietary restriction.

  • Jun Chen‎ et al.
  • Genome medicine‎
  • 2016‎

Nutritional interventions often fail to prevent growth failure in childhood and adolescent malnutrition and the mechanisms remain unclear. Recent studies revealed altered microbiota in malnourished children and anorexia nervosa. To facilitate mechanistic studies under physiologically relevant conditions, we established a mouse model of growth failure following chronic dietary restriction and examined microbiota in relation to age, diet, body weight, and anabolic treatment.


Impact of demographics on human gut microbial diversity in a US Midwest population.

  • Jun Chen‎ et al.
  • PeerJ‎
  • 2016‎

The clinical utility of microbiome biomarkers depends on the reliable and reproducible nature of comparative results. Underappreciation of the variation associated with common demographic, health, and behavioral factors may confound associations of interest and generate false positives. Here, we present the Midwestern Reference Panel (MWRP), a resource for comparative gut microbiome studies conducted in the Midwestern United States. We analyzed the relationships between demographic and health behavior-related factors and the microbiota in this cohort, and estimated their effect sizes. Most variables investigated were associated with the gut microbiota. Specifically, body mass index (BMI), race, sex, and alcohol use were significantly associated with microbial β-diversity (P < 0.05, unweighted UniFrac). BMI, race and alcohol use were also significantly associated with microbial α-diversity (P < 0.05, species richness). Tobacco use showed a trend toward association with the microbiota (P < 0.1, unweighted UniFrac). The effect sizes of the associations, as quantified by adjusted R(2) values based on unweighted UniFrac distances, were small (< 1% for all variables), indicating that these factors explain only a small percentage of overall microbiota variability. Nevertheless, the significant associations between these variables and the gut microbiota suggest that they could still be potential confounders in comparative studies and that controlling for these variables in study design, which is the main objective of the MWRP, is important for increasing reproducibility in comparative microbiome studies.


Incorporating robotic-assisted surgery for endometrial cancer staging: Analysis of morbidity and costs.

  • Giorgio Bogani‎ et al.
  • Gynecologic oncology‎
  • 2016‎

To evaluate how the introduction of robotic-assisted surgery affects treatment-related morbidity and cost of endometrial cancer (EC) staging.


A comprehensive analysis of breast cancer microbiota and host gene expression.

  • Kevin J Thompson‎ et al.
  • PloS one‎
  • 2017‎

The inflammatory tumoral-immune response alters the physiology of the tumor microenvironment, which may attenuate genomic instability. In addition to inducing inflammatory immune responses, several pathogenic bacteria produce genotoxins. However the extent of microbial contribution to the tumor microenvironment biology remains unknown. We utilized The Cancer Genome Atlas, (TCGA) breast cancer data to perform a novel experiment utilizing unmapped and mapped RNA sequencing read evidence to minimize laboratory costs and effort. Our objective was to characterize the microbiota and associate the microbiota with the tumor expression profiles, for 668 breast tumor tissues and 72 non-cancerous adjacent tissues. The prominent presence of Proteobacteria was increased in the tumor tissues and conversely Actinobacteria abundance increase in non-cancerous adjacent tissues. Further, geneset enrichment suggests Listeria spp to be associated with the expression profiles of genes involved with epithelial to mesenchymal transitions. Moreover, evidence suggests H. influenza may reside in the surrounding stromal material and was significantly associated with the proliferative pathways: G2M checkpoint, E2F transcription factors, and mitotic spindle assembly. In summary, further unraveling this complicated interplay should enable us to better diagnose and treat breast cancer patients.


Application of metagenomic shotgun sequencing to detect vector-borne pathogens in clinical blood samples.

  • Prakhar Vijayvargiya‎ et al.
  • PloS one‎
  • 2019‎

Vector-borne pathogens are a significant public health concern worldwide. Infections with these pathogens, some of which are emerging, are likely under-recognized due to the lack of widely-available laboratory tests. There is an urgent need for further advancement in diagnostic modalities to detect new and known vector-borne pathogens. We evaluated the utility of metagenomic shotgun sequencing (MGS) as a pathogen agnostic approach for detecting vector-borne pathogens from human blood samples.


Geobiology reveals how human kidney stones dissolve in vivo.

  • Mayandi Sivaguru‎ et al.
  • Scientific reports‎
  • 2018‎

More than 10% of the global human population is now afflicted with kidney stones, which are commonly associated with other significant health problems including diabetes, hypertension and obesity. Nearly 70% of these stones are primarily composed of calcium oxalate, a mineral previously assumed to be effectively insoluble within the kidney. This has limited currently available treatment options to painful passage and/or invasive surgical procedures. We analyze kidney stone thin sections with a combination of optical techniques, which include bright field, polarization, confocal and super-resolution nanometer-scale auto-fluorescence microscopy. Here we demonstrate using interdisciplinary geology and biology (geobiology) approaches that calcium oxalate stones undergo multiple events of dissolution as they crystallize and grow within the kidney. These observations open a fundamentally new paradigm for clinical approaches that include in vivo stone dissolution and identify high-frequency layering of organic matter and minerals as a template for biomineralization in natural and engineered settings.


Optimizing Nanopore Sequencing for Rapid Detection of Microbial Species and Antimicrobial Resistance in Patients at Risk of Surgical Site Infections.

  • Emma Whittle‎ et al.
  • mSphere‎
  • 2022‎

Surgical site infections (SSI) are a significant burden to patients and health care systems. We evaluated the use of Nanopore sequencing (NS) to rapidly detect microbial species and antimicrobial resistance (AMR) genes present in intraoperative bile aspirates. Bile aspirates from 42 patients undergoing pancreatic head resection were included. Three methods of DNA extraction using mechanical cell lysis or protease cell lysis were compared to determine the optimum method of DNA extraction. The impact of host DNA depletion, sequence run duration, and use of different AMR gene databases was also assessed. To determine clinical value, NS results were compared to standard culture (SC) results. NS identified microbial species in all culture positive samples. Mechanical lysis improved NS detection of cultured species from 60% to 76%, enabled detection of fungal species, and increased AMR predictions. Host DNA depletion improved detection of streptococcal species and AMR correlation with SC. Selection of AMR database influenced the number of AMR hits and resistance profile of 13 antibiotics. AMR prediction using CARD and ResFinder 4.1 correctly predicted 79% and 81% of the bile antibiogram, respectively. Sequence run duration positively correlated with detection of AMR genes. A minimum of 6 h was required to characterize the biliary microbes, resulting in a turnaround time of 14 h. Rapid identification of microbial species and AMR genes can be achieved by NS. NS results correlated with SC, suggesting that NS may be useful in guiding early antimicrobial therapy postsurgery. IMPORTANCE Surgical site infections (SSI) are a significant burden to patients and health care systems. They increase mortality rates, length of hospital stays, and associated health care costs. To reduce the risk of SSI, surgical patients are administered broad-spectrum antibiotics that are later adapted to target microbial species detected at the site of surgical incision. Use of broad-spectrum antibiotics can be harmful to the patient. We wanted to develop a rapid method of detecting microbial species and their antimicrobial resistance phenotypes. We developed a method of detecting microbial species and predicting resistance phenotypes using Nanopore sequencing. Results generated using Nanopore sequencing were similar to current methods of detection but were obtained in a significantly shorter amount of time. This suggests that Nanopore sequencing could be used to tailor antibiotics in surgical patients and reduce use of broad-spectrum antibiotics.


A systemic review of the role of enterotoxic Bacteroides fragilis in colorectal cancer.

  • Nancy Scott‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2022‎

Enterotoxigenic Bacteroides fragilis (ETBF) has received significant attention for a possible association with, or causal role in, colorectal cancer (CRC). The goal of this review was to assess the status of the published evidence supporting (i) the association between ETBF and CRC and (ii) the causal role of ETBF in CRC. PubMed and Scopus searches were performed in August 2021 to identify human, animal, and cell studies pertaining to the role of ETBF in CRC. Inclusion criteria included the use of cell lines, mice, exposure to BFT or ETBF, and detection of bft. Review studies were excluded, and studies were limited to the English language. Quality of study design and risk of bias analysis was performed on the cell, animal, and human studies using ToxRTools, SYRCLE, and NOS, respectively. Ninety-five eligible studies were identified, this included 22 human studies, 24 animal studies, 43 cell studies, and 6 studies that included both cells and mice studies. We found that a large majority of studies supported an association or causal role of ETBF in CRC, as well as high levels of study bias was detected in the in vitro and in vivo studies. The high-level heterogeneity in study design and reporting made it difficult to synthesize these findings into a unified conclusion, suggesting that the need for future studies that include improved mechanistic models, longitudinal in vitro and in vivo evidence, and appropriate control of confounding factors will be required to confirm whether ETBF has a direct role in CRC etiopathogenesis.


Advancing Tailored Treatments: A Predictive Nomogram, Based on Ultrasound and Laboratory Data, for Assessing Nodal Involvement in Endometrial Cancer Patients.

  • Ida Pino‎ et al.
  • Journal of clinical medicine‎
  • 2024‎

Assessing lymph node metastasis is crucial in determining the optimal therapeutic approach for endometrial cancer (EC). Considering the impact of lymphadenectomy, there is an urgent need for a cost-effective and easily applicable method to evaluate the risk of lymph node metastasis in cases of sentinel lymph node (SLN) biopsy failure. This retrospective monocentric study enrolled EC patients, who underwent surgical staging with nodal assessment. Data concerning demographic, clinicopathological, ultrasound, and surgical characteristics were collected from medical records. Ultrasound examinations were conducted in accordance with the IETA statement. We identified 425 patients, and, after applying exclusion criteria, the analysis included 313 women. Parameters incorporated into the nomogram were selected via univariate and multivariable analyses, including platelet count, myometrial infiltration, minimal tumor-free margin, and CA 125. The nomogram exhibited good accuracy in predicting lymph node involvement, with an AUC of 0.88. Using a cutoff of 10% likelihood of nodal involvement, the nomogram displayed a low false-negative rate of 0.04 (95% CI 0.00-0.19) in the training set. The adaptability of this straightforward model renders it suitable for implementation across diverse clinical settings, aiding gynecological oncologists in preoperative patient evaluations and facilitating the design of personalized treatments. However, external validation is mandatory for confirming diagnostic accuracy.


Gut microbiome meta-analysis reveals dysbiosis is independent of body mass index in predicting risk of obesity-associated CRC.

  • K Leigh Greathouse‎ et al.
  • BMJ open gastroenterology‎
  • 2019‎

Obesity is a risk factor for colorectal cancer (CRC), accounting for more than 14% of CRC incidence. Microbial dysbiosis and chronic inflammation are common characteristics in both obesity and CRC. Human and murine studies, together, demonstrate the significant impact of the microbiome in governing energy metabolism and CRC development; yet, little is understood about the contribution of the microbiome to development of obesity-associated CRC as compared to individuals who are not obese.


Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls.

  • Jun Chen‎ et al.
  • Scientific reports‎
  • 2016‎

Multiple sclerosis (MS) is an immune-mediated disease, the etiology of which involves both genetic and environmental factors. The exact nature of the environmental factors responsible for predisposition to MS remains elusive; however, it's hypothesized that gastrointestinal microbiota might play an important role in pathogenesis of MS. Therefore, this study was designed to investigate whether gut microbiota are altered in MS by comparing the fecal microbiota in relapsing remitting MS (RRMS) (n = 31) patients to that of age- and gender-matched healthy controls (n = 36). Phylotype profiles of the gut microbial populations were generated using hypervariable tag sequencing of the V3-V5 region of the 16S ribosomal RNA gene. Detailed fecal microbiome analyses revealed that MS patients had distinct microbial community profile compared to healthy controls. We observed an increased abundance of Psuedomonas, Mycoplana, Haemophilus, Blautia, and Dorea genera in MS patients, whereas control group showed increased abundance of Parabacteroides, Adlercreutzia and Prevotella genera. Thus our study is consistent with the hypothesis that MS patients have gut microbial dysbiosis and further study is needed to better understand their role in the etiopathogenesis of MS.


Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis.

  • Jaeyun Sung‎ et al.
  • Nature communications‎
  • 2017‎

A system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut.


Daily Vaginal Microbiota Fluctuations Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise.

  • Stephanie D Song‎ et al.
  • mSphere‎
  • 2020‎

The microorganisms of the vaginal tract are critical for vaginal and reproductive health. However, the regulation of these microorganisms is not well understood. Therefore, we investigated whether different factors regulate the vaginal microbiota of healthy college-aged women (n = 26) with high temporal resolution by collecting daily self-administered vaginal swabs and using 16S rRNA sequencing for bacterial identification. As expected, vaginal microbiota clustered into five predefined community state types. Vaginal microbial diversity, stability, and Lactobacillus abundances were associated with the menstrual cycle and hormonal contraceptive use. Vaginal microbial diversity, as measured using the Shannon index, increased during menses (P < 0.001), while Lactobacillus abundances decreased (P = 0.01). The covariance of these microbial measures with previously established estradiol levels suggests that estrogens can regulate vaginal microbiota. Moreover, the use of hormonal contraceptives may alter the temporal dynamics of the vaginal microbiota and decrease Lactobacillus abundances, depending on hormonal content and release method. Interestingly, intrasample diversity was greater in participants on a vegetarian diet (P = 0.004) and among participants who exercised more (P = 0.04). These findings indicate that ovarian hormones, diet, and exercise can regulate vaginal microbial composition and stability and may impact vaginal and reproductive health.IMPORTANCE The vaginal microbiome is a critical component of women's sexual and reproductive health, with variations in microbial composition, particularly the loss of Lactobacillus species, being implicated in gynecologic and obstetric diseases. Given that the vaginal microbiome is so crucial, why do vaginal microbial profiles vary strikingly from person to person and even change over time within the same person? In the present study, which tracked the daily vaginal microbiomes of young healthy women through different lifestyles, we found that use of a locally released progestin contraceptive, a vegetarian diet, and intense exercise appear to lead to vaginal microbiome alterations and loss of Lactobacillus species. The impact of these vaginal microbiome changes on immediate and long-term health remain to be investigated.


Invasive vulvar extramammary Paget's disease in the United States.

  • Toni P Kilts‎ et al.
  • Gynecologic oncology‎
  • 2020‎

To assess the incidence, treatment, and outcomes in patients with invasive vulvar extramammary Paget's disease (EMPD) in a national cohort of patients.


The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease.

  • Tina J Hieken‎ et al.
  • Scientific reports‎
  • 2016‎

Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention.


Implementing robotic surgery for uterine cancer in the United States: Better outcomes without increased costs.

  • Jvan Casarin‎ et al.
  • Gynecologic oncology‎
  • 2020‎

To examine the effect of robotic-assisted surgery implementation for treatment of endometrial cancer in the United States on 30-day clinical outcomes and costs.


Porphyromonas somerae Invasion of Endometrial Cancer Cells.

  • Taylor A Crooks‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Recent evidence suggests an association between endometrial cancer and the understudied bacterial species Porphyromonas somerae. This association was demonstrated in previous work that indicated a significantly enriched abundance of P. somerae in the uterine microbiome of endometrial cancer patients. Given the known associations of the Porphyromonas genus and oral cancer, we hypothesized that P. somerae may play a similar pathogenic role in endometrial cancer via intracellular activity. Before testing our hypothesis, we first characterized P. somerae biology, as current background data is limited. These novel characterizations include growth curves in liquid medium and susceptibility tests to antibiotics. We tested our hypothesis by examining growth changes in response to 17β-estradiol, a known risk factor for endometrial cancer, followed by metabolomic profiling in the presence and absence of 17β-estradiol. We found that P. somerae exhibits increased growth in the presence of 17β-estradiol of various concentrations. However, we did not find significant changes in metabolite levels in response to 17β-estradiol. To study direct host-microbe interactions, we used in vitro invasion assays under hypoxic conditions and found evidence for intracellular invasion of P. somerae in endometrial adenocarcinoma cells. We also examined these interactions in the presence of 17β-estradiol but did not observe changes in invasion frequency. Invasion was shown using three lines of evidence including visualization via differential staining and brightfield microscopy, increased frequency of bacterial recovery after co-culturing, and in silico methods to detail relevant genomic and transcriptomic components. These results underscore potential intracellular phenotypes of P. somerae within the uterine microbiome. Furthermore, these results raise new questions pertaining to the role of P. somerae in the progression of endometrial cancer.


Capturing One of the Human Gut Microbiome's Most Wanted: Reconstructing the Genome of a Novel Butyrate-Producing, Clostridial Scavenger from Metagenomic Sequence Data.

  • Patricio Jeraldo‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP) researchers generated a list of "most wanted" taxa: bacteria both prevalent among healthy volunteers and distantly related to any sequenced organisms. Unfortunately, the challenge of assembling high-quality genomes from a tangle of metagenomic reads has slowed progress in learning about these uncultured bacteria. Here, we describe how recent advances in sequencing and analysis allowed us to assemble "most wanted" genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP's criteria for a "most wanted" taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/Clostridium leptum subgroup species Butyricicoccus pullicaecorum (71-76% average nucleotide identity). Gene function analysis indicates that the species is an obligate anaerobe, forms spores, and produces the anti-inflammatory short-chain fatty acids acetate and butyrate. It also appears to take up metabolically costly molecules such as cobalamin, methionine, and branch-chained amino acids from the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient-scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases such as colon cancer and inflammatory bowel disease. In conclusion, we have assembled essentially complete genomes from stool metagenomic data, yielding valuable information about uncultured organisms' metabolic and ecologic niches, factors that may be required to successfully culture these bacteria, and their role in maintaining health and causing disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: