Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 154 papers

Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

  • Sunita Gulati‎ et al.
  • PLoS pathogens‎
  • 2015‎

Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP-Leg5Ac7Ac-treated mice were sensitive to human complement ex vivo, simulating in vitro findings. These data reveal critical roles for the Sia exocyclic side-chain in gonococcal serum-resistance. Such CMP-NulO analogs may provide a novel therapeutic strategy against the global threat of multidrug-resistant gonorrhea.


De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.).

  • Xueping Shi‎ et al.
  • BMC genomics‎
  • 2016‎

Somatic embryogenesis is a notable illustration of cell totipotency, by which somatic cells undergo dedifferentiation and then differentiate into somatic embryos. Our previous work demonstrated that pretreatment of immature zygotic embryos with 0.5 M sucrose solution for 72 h efficiently induced somatic embryo initiation in camphor tree. To better understand the molecular basis of somatic embryogenesis induced by osmotic stress, de novo transcriptome sequencing of three tissues of camphor tree (immature zygotic embryos, sucrose-pretreated immature zygotic embryos, and somatic embryos induced from sucrose-pretreated zygotic embryos) were conducted using Illumina Hiseq 2000 platform.


An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination.

  • Michael B Keough‎ et al.
  • Nature communications‎
  • 2016‎

Remyelination is the generation of new myelin sheaths after injury facilitated by processes of differentiating oligodendrocyte precursor cells (OPCs). Although this repair phenomenon occurs in lesions of multiple sclerosis patients, many lesions fail to completely remyelinate. A number of factors have been identified that contribute to remyelination failure, including the upregulated chondroitin sulfate proteoglycans (CSPGs) that comprise part of the astrogliotic scar. We show that in vitro, OPCs have dramatically reduced process outgrowth in the presence of CSPGs, and a medication library that includes a number of recently reported OPC differentiation drugs failed to rescue this inhibitory phenotype on CSPGs. We introduce a novel CSPG synthesis inhibitor to reduce CSPG content and find rescued process outgrowth from OPCs in vitro and accelerated remyelination following focal demyelination in mice. Preventing CSPG deposition into the lesion microenvironment may be a useful strategy to promote repair in multiple sclerosis and other neurological disorders.


Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd.

  • Cheng Sun‎ et al.
  • BMC research notes‎
  • 2014‎

Odd traits in few of plant species usually implicate potential biology significances in plant evolutions. The genus Helwingia Willd, a dioecious medical shrub in Aquifoliales order, has an odd floral architecture-epiphyllous inflorescence. The potential significances and possible evolutionary origin of this specie are not well understood due to poorly available data of biological and genetic studies. In addition, the advent of genomics-based technologies has widely revolutionized plant species with unknown genomic information.


Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast.

  • Bo Zheng‎ et al.
  • Scientific reports‎
  • 2015‎

We demonstrate that Magnetic Particle Imaging (MPI) enables monitoring of cellular grafts with high contrast, sensitivity, and quantitativeness. MPI directly detects the intense magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI is safe, noninvasive and offers superb sensitivity, with great promise for clinical translation and quantitative single-cell tracking. Here we report the first MPI cell tracking study, showing 200-cell detection in vitro and in vivo monitoring of human neural graft clearance over 87 days in rat brain.


Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells.

  • Quan Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Spermatogonial stem cells (SSCs) are undifferentiated cells that are required to maintain spermatogenesis throughout the reproductive life of mammals. Although SSC transplantation and culture provide a powerful tool to identify the mechanisms regulating SSC function, the precise signalling mechanisms governing SSC self-renewal and specific surface markers for purifying SSCs remain to be clearly determined. In the present study, we established a steady SSC culture according to the method described by Shinohara's lab. Fertile progeny was produced after transplantation of cultured SSCs into infertile mouse testis, and the red fluorescence exhibited by the culture cell membranes was stably and continuously transmitted to the offspring. Next, via advanced mass spectrometry and an optimized proteomics platform, we constructed the proteome profile, with 682 proteins expressed in SSCs. Furthermore bioinformatics analysis showed that the list contained several known molecules that are regulated in SSCs. Several nucleoproteins and membrane proteins were chosen for further exploration using immunofluorescence and RT-PCR. The results showed that SALL1, EZH2, and RCOR2 are possibly involved in the self-renewal mechanism of SSCs. Furthermore, the results of tissue-specific expression analysis showed that Gpat2 and Pld6 were uniquely and highly expressed in mouse testes and cultured SSCs. The cellular localization of PLD6 was further explored and the results showed it was primarily expressed in the spermatogonial membrane of mouse testes and cultured SSCs. The proteins identified in this study form the basis for further exploring the molecular mechanism of self-renewal in SSCs and for identifying specific surface markers of SSCs.


Biochemical clinical factors associated with missed abortion independent of maternal age: A retrospective study of 795 cases with missed abortion and 694 cases with normal pregnancy.

  • Jie Fang‎ et al.
  • Medicine‎
  • 2018‎

The incidence of fertile women with missed abortion dramatically increased in recent years, while very few serum indices have been identified for the diagnosis of missed abortion. The aim of this study was to identify related factors for missed abortion through a retrospective study of serum indices.A total of 795 cases of women with missed abortion and 694 cases of women with normal pregnancy between March 2014 and March 2017 were included in the present study. The diagnosis of missed abortion was based on clinical history, clinical examination, and transvaginal ultrasound findings. The final diagnosis of missed abortion was based on assessment of pregnancy structures (i.e., a gestational sac without fetal heart rate) via transvaginal ultrasound. We evaluated the clinical values of 4 serum indices and their relationship to missed abortion: gamma-glutamyltransferase (GGT), lactate dehydrogenase (LDH), adenosine deaminase (ADA), and fibrinogen (FIB).The serum levels of GGT, ADA, and FIB showed statistically significant differences comparing women who experienced missed abortion with women who had normal pregnancies (controls). Among women with missed abortion, the levels of GGT and ADA were dramatically increased (GGT: P < .0001; ADA: P = .0459), while FIB levels were slightly lower (P = .0084) compared to controls. The LDH levels exhibited a non-significant trend toward lower levels in the missed abortion group (P = .3951). Interestingly, the observed significant increase in serum GTT levels among women with missed abortion was not affected by maternal age.This study found that GTT may be a useful marker which was associated with missed abortion, indicating its potential clinical roles in missed abortion.


ATP synthase is required for male fertility and germ cell maturation in Drosophila testes.

  • Jun Yu‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Germ cell maturation is essential for spermatogenesis and testis homeostasis. ATP synthase serves significant roles in energy storage in germ cell survival and is catalyzed by alterations in the mitochondrial membrane proton concentration. The intrinsic cellular mechanisms governing stem cell maturation remain largely unknown. In the present study, in vivo RNA interference (RNAi) screening of major ATP synthase subunits was performed, and the function of ATP synthase for male fertility and spermatogenesis in Drosophila was explored. A Upstream Activation Sequence/Gal4 transcription factor system was used to knock down gene expression in specific cell types, and immunofluorescence staining was conducted to assess the roles of ATP synthase subunits in Drosophila testes. It was identified that knockdown of ATP synthase resulted in male infertility and abnormal spermatogenesis in Drosophila testes. In addition, knockdown of the ATP synthase β subunit in germ cells resulted in defects in male infertility and germ cell maturation, while the hub and cyst cell populations were maintained. Other major ATP synthase subunits were also examined and similar phenotypes in Drosophila testes were identified. Taken together, the data from the present study revealed that ATP synthase serves important roles for male fertility during spermatogenesis by regulating germ cell maturation in Drosophila testes.


Utilization of rare codon-rich markers for screening amino acid overproducers.

  • Bo Zheng‎ et al.
  • Nature communications‎
  • 2018‎

The translation of rare codons relies on their corresponding rare tRNAs, which could not be fully charged under amino acid starvation. Theoretically, disrupted or retarded translation caused by the lack of charged rare tRNAs can be partially restored by feeding or intracellular synthesis of the corresponding amino acids. Inspired by this assumption, we develop a screening or selection system for obtaining overproducers of a target amino acid by replacing its common codons with the corresponding synonymous rare alternative in the coding sequence of selected reporter proteins or antibiotic-resistant markers. Results show that integration of rare codons can inhibit gene translations in a frequency-dependent manner. As a proof-of-concept, Escherichia coli strains overproducing L-leucine, L-arginine or L-serine are successfully selected from random mutation libraries. The system is also applied to Corynebacterium glutamicum to screen out L-arginine overproducers. This strategy sheds new light on obtaining and understanding amino acid overproduction strains.


Quantitative disease progression model of α-1 proteinase inhibitor therapy on computed tomography lung density in patients with α-1 antitrypsin deficiency.

  • Michael A Tortorici‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

Early-onset emphysema attributed to α-1 antitrypsin deficiency (AATD) is frequently overlooked and undertreated. RAPID-RCT/RAPID-OLE, the largest clinical trials of purified human α-1 proteinase inhibitor (A1 -PI; 60 mg kg-1  week-1 ) therapy completed to date, demonstrated for the first time that A1 -PI is clinically effective in slowing lung tissue loss in AATD. A posthoc pharmacometric analysis was undertaken to further explore dose, exposure and response.


In-depth proteomic analysis of the human sperm reveals complex protein compositions.

  • Gaigai Wang‎ et al.
  • Journal of proteomics‎
  • 2013‎

The male gamete (sperm) can fertilize an egg, and pass the male genetic information to the offspring. It has long been thought that sperm had a simple protein composition. Efforts have been made to identify the sperm proteome in different species, and only about 1000 proteins were reported. However, with advanced mass spectrometry and an optimized proteomics platform, we successfully identified 4675 human sperm proteins, of which 227 were testis-specific. This large number of identified proteins indicates the complex composition and function of human sperm. Comparison with the sperm transcriptome reveals little overlap, which shows the importance of future studies of sperm at the protein level. Interestingly, many signaling pathways, such as the IL-6, insulin and TGF-beta receptor signaling pathways, were found to be overrepresented. In addition, we found that 500 proteins were annotated as targets of known drugs. Three of four drugs studied were found to affect sperm movement. This in-depth human sperm proteome will be a rich resource for further studies of sperm function, and will provide candidate targets for the development of male contraceptive drugs.


[Discussion on strategy of imported falciparum malaria control in Baoying County, 2007 -2009].

  • Jia-Xiang Lu‎ et al.
  • Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control‎
  • 2011‎

The analysis on control of imported falciparum malaria in Baoying County from 2007 to 2009 showed that all the 25 cases occured were cured. It suggested that the prevention and control strategy and measures on imported falciparum malaria in local areas were effective.


Exhaustive expansion: A novel technique for analyzing complex data generated by higher-order polychromatic flow cytometry experiments.

  • Janet C Siebert‎ et al.
  • Journal of translational medicine‎
  • 2010‎

The complex data sets generated by higher-order polychromatic flow cytometry experiments are a challenge to analyze. Here we describe Exhaustive Expansion, a data analysis approach for deriving hundreds to thousands of cell phenotypes from raw data, and for interrogating these phenotypes to identify populations of biological interest given the experimental context.


Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.

  • Peng Chen‎ et al.
  • BMC plant biology‎
  • 2010‎

In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development.


Andrographolide ameliorates d-galactosamine/lipopolysaccharide-induced acute liver injury by activating Nrf2 signaling pathway.

  • Chen-Wei Pan‎ et al.
  • Oncotarget‎
  • 2017‎

Andrographolide (ADH), a diterpenoid lactone extracted from Andrographis paniculata, has been found to have anti-inflammatory and anti-oxidative effects. However, its protective effects and mechanisms on liver injury have not been investigated clearly. This study takes an attempt to reveal the protective effects and mechanism of ADH on lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver injury in mice. The mice liver injury model was induced by LPS (60 mg/kg) and D-GalN (800 mg/kg), and ADH was given 1 h after LPS and D-GalN treatment. Hepatic tissue histology was measured by H&E staining. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected by detection kits. The levels of TNF-α and IL-1β were detected by ELISA. Moreover, malondialdehyde (MDA) and reactive oxygen species (ROS) contents were also detected. Meanwhile, the expression of Nrf2, HO-1, and NF-κB were detected by western blot analysis. The results showed that ADH treatment improved liver histology and decreased the levels of ALT, AST, MPO, IL-1β, TNF-α, as well as MDA and ROS levels of hepatic tissues in a dose-dependent manner. ADH also inhibited LPS/D-GalN-induced NF-κB activation. The expression of Nrf2 and HO-1 were increased by treatment of ADH. In conclusion, ADH protected against LPS/D-GalN-induced liver injury by inhibiting NF-κB and activating Nrf2 signaling pathway.


Preclinical Efficacy of a Lipooligosaccharide Peptide Mimic Candidate Gonococcal Vaccine.

  • Sunita Gulati‎ et al.
  • mBio‎
  • 2019‎

The global spread of multidrug-resistant strains of Neisseria gonorrhoeae constitutes a public health emergency. With limited antibiotic treatment options, there is an urgent need for development of a safe and effective vaccine against gonorrhea. Previously, we constructed a prototype vaccine candidate comprising a peptide mimic (mimitope) of a glycan epitope on gonococcal lipooligosaccharide (LOS), recognized by monoclonal antibody 2C7. The 2C7 epitope is (i) broadly expressed as a gonococcal antigenic target in human infection, (ii) a critical requirement for gonococcal colonization in the experimental setting, and (iii) a virulence determinant that is maintained and expressed by gonococci. Here, we have synthesized to >95% purity through a relatively facile and economical process a tetrapeptide derivative of the mimitope that was cyclized through a nonreducible thioether bond, thereby rendering the compound homogeneous and stable. This vaccine candidate, called TMCP2, when administered at 0, 3, and 6 weeks to BALB/c mice at either 50, 100 or 200 μg/dose in combination with glucopyranosyl lipid A-stable oil-in-water nanoemulsion (GLA-SE; a Toll-like receptor 4 and TH1-promoting adjuvant), elicited bactericidal IgG and reduced colonization levels of gonococci in experimentally infected mice while accelerating clearance by each of two different gonococcal strains. Similarly, a 3-dose biweekly schedule (50 μg TMCP2/dose) was also effective in mice. We have developed a gonococcal vaccine candidate that can be scaled up and produced economically to a high degree of purity. The candidate elicits bactericidal antibodies and is efficacious in a preclinical experimental infection model.IMPORTANCENeisseria gonorrhoeae has become resistant to most antibiotics. The incidence of gonorrhea is also sharply increasing. A safe and effective antigonococcal vaccine is urgently needed. Lipooligosaccharide (LOS), the most abundant outer membrane molecule, is indispensable for gonococcal pathogenesis. A glycan epitope on LOS that is recognized by monoclonal antibody (MAb) 2C7 (called the 2C7 epitope) is expressed almost universally by gonococci in vivo Previously, we identified a peptide mimic (mimitope) of the 2C7 epitope, which when configured as an octamer and used as an immunogen, attenuated colonization of mice by gonococci. Here, a homogenous, stable tetrameric derivative of the mimitope, when combined with a TH1-promoting adjuvant and used as an immunogen, also effectively attenuates gonococcal colonization of mice. This candidate peptide vaccine can be produced economically, an important consideration for gonorrhea, which affects socioeconomically underprivileged populations disproportionately, and represents an important advance in the development of a gonorrhea vaccine.


An individualized immune signature of pretreatment biopsies predicts pathological complete response to neoadjuvant chemoradiotherapy and outcomes in patients with esophageal squamous cell carcinoma.

  • Chaoqi Zhang‎ et al.
  • Signal transduction and targeted therapy‎
  • 2020‎

No clinically available biomarkers can predict pathological complete response (pCR) for esophageal squamous cell carcinomas (ESCCs) with neoadjuvant chemoradiotherapy (nCRT). Considering that antitumor immunity status is an important determinant for nCRT, we performed an integrative analysis of immune-related gene profiles from pretreatment biopsies and constructed the first individualized immune signature for pCR and outcome prediction of ESCCs through a multicenter analysis. During the discovery phase, 14 differentially expressed immune-related genes (DEIGs) with greater than a twofold change between pCRs and less than pCRs (


Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences.

  • Zhe Zhang‎ et al.
  • BMC genomics‎
  • 2020‎

The CLV3/ESR-RELATED (CLE) gene family encodes small secreted peptides (SSPs) and plays vital roles in plant growth and development by promoting cell-to-cell communication. The prediction and classification of CLE genes is challenging because of their low sequence similarity.


Persistence of HIV-1 Env-Specific Plasmablast Lineages in Plasma Cells after Vaccination in Humans.

  • Madhubanti Basu‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Induction of persistent HIV-1 Envelope (Env) specific antibody (Ab) is a primary goal of HIV vaccine strategies; however, it is unclear whether HIV Env immunization in humans induces bone marrow plasma cells, the presumed source of long-lived systemic Ab. To define the features of Env-specific plasma cells after vaccination, samples were obtained from HVTN 105, a phase I trial testing the same gp120 protein immunogen, AIDSVAX B/E, used in RV144, along with a DNA immunogen in various prime and boost strategies. Boosting regimens that included AIDSVAX B/E induced robust peripheral blood plasmablast responses. The Env-specific immunoglobulin repertoire of the plasmablasts is dominated by VH1 gene usage and targeting of the V3 region. Numerous plasmablast-derived immunoglobulin lineages persisted in the bone marrow >8 months after immunization, including in the CD138+ long-lived plasma cell compartment. These findings identify a cellular linkage for the development of sustained Env-specific Abs following vaccination in humans.


Association of Plasma Vitamin B6 With Coronary Heart Disease in Patients Undergoing Diagnostic Coronary Angiography: New Insight on Sex Differences.

  • Lihua Hu‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Aim: To date, findings on the overall and sex-specific effects of plasma pyridoxal 5'-phosphate (PLP, active coenzyme form of vitamin B6) on the risk of coronary heart disease (CHD) have been inconsistent. This study sought to advance our understanding on the association of plasma PLP with risk of CHD, with particular attention paid to sex differences and effect modifiers. Methods: We conducted a hospital-based, case-control study on suspected CHD patients undergoing diagnostic coronary angiography. A total of 429 CHD cases and 429 controls matched by age, sex, and operation time were included in the final analysis. Plasma PLP was assessed using LC-MS. Logistic regression analyses were performed to evaluate the association between plasma PLP and a first CHD event. Results: The mean (SD) plasma PLP levels were 8.4 (6.3) in male cases and 9.0 (11.0) in female cases, and 9.5 (8.5) in male controls and 12.5 (12.9) in female controls. Each 1 ng/mL increment in log2PLP was associated with a 28% lower risk of CHD in overall population. When stratified by sex, plasma PLP was significantly and independently associated with CHD in women (OR = 0.63, 95% CI: 0.50-0.80), but not in men (OR = 0.86, 95% CI: 0.67-1.09). The association of plasma PLP with CHD risk was modified by sex (adjusted P interaction = 0.022). Conclusions: We found a significant, inverse linear association between plasma PLP and CHD in Chinese women, but not in men. Our findings warrant additional investigation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: