Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 93 papers

TAK1 is an essential regulator of BMP signalling in cartilage.

  • Jae-Hyuck Shim‎ et al.
  • The EMBO journal‎
  • 2009‎

TGFbeta activated kinase 1 (TAK1), a member of the MAPKKK family, controls diverse functions ranging from innate and adaptive immune system activation to vascular development and apoptosis. To analyse the in vivo function of TAK1 in cartilage, we generated mice with a conditional deletion of Tak1 driven by the collagen 2 promoter. Tak1(col2) mice displayed severe chondrodysplasia with runting, impaired formation of secondary centres of ossification, and joint abnormalities including elbow dislocation and tarsal fusion. This phenotype resembled that of bone morphogenetic protein receptor (BMPR)1 and Gdf5-deficient mice. BMPR signalling was markedly impaired in TAK1-deficient chondrocytes as evidenced by reduced expression of known BMP target genes as well as reduced phosphorylation of Smad1/5/8 and p38/Jnk/Erk MAP kinases. TAK1 mediates Smad1 phosphorylation at C-terminal serine residues. These findings provide the first in vivo evidence in a mammalian system that TAK1 is required for BMP signalling and functions as an upstream activating kinase for Smad1/5/8 in addition to its known role in regulating MAP kinase pathways. Our experiments reveal an essential role for TAK1 in the morphogenesis, growth, and maintenance of cartilage.


Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase.

  • Xingnan Zheng‎ et al.
  • Genes & development‎
  • 2014‎

The three EglN prolyl hydroxylases (EglN1, EglN2, and EglN3) regulate the stability of the HIF transcription factor. We recently showed that loss of EglN2, however, also leads to down-regulation of Cyclin D1 and decreased cell proliferation in a HIF-independent manner. Here we report that EglN2 can hydroxylate FOXO3a on two specific prolyl residues in vitro and in vivo. Hydroxylation of these sites prevents the binding of USP9x deubiquitinase, thereby promoting the proteasomal degradation of FOXO3a. FOXO transcription factors can repress Cyclin D1 transcription. Failure to hydroxylate FOXO3a promotes its accumulation in cells, which in turn suppresses Cyclin D1 expression. These findings provide new insights into post-transcriptional control of FOXO3a and provide a new avenue for pharmacologically altering Cyclin D1 activity.


Meloxicam executes its antitumor effects against hepatocellular carcinoma in COX-2- dependent and -independent pathways.

  • Xiaofeng Dong‎ et al.
  • PloS one‎
  • 2014‎

Cyclooxygenase (COX)-2 is overexpressed in many types of cancers including hepatocellular carcinoma (HCC). Meloxicam, a selective COX-2 inhibitor, has shown potential therapeutic effects against HCC, but the mechanisms accounting for its anti-cancer activities remain unclear.


The microtubule-associated protein DCAMKL1 regulates osteoblast function via repression of Runx2.

  • Weiguo Zou‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

Osteoblasts are responsible for the formation and mineralization of the skeleton. To identify novel regulators of osteoblast differentiation, we conducted an unbiased forward genetic screen using a lentiviral-based shRNA library. This functional genomics analysis led to the identification of the microtubule-associated protein DCAMKL1 (Doublecortin-like and CAM kinase-like 1) as a novel regulator of osteogenesis. Mice with a targeted disruption of Dcamkl1 displayed elevated bone mass secondary to increased bone formation by osteoblasts. Molecular experiments demonstrated that DCAMKL1 represses osteoblast activation by antagonizing Runx2, the master transcription factor in osteoblasts. Key elements of the cleidocranial dysplasia phenotype observed in Runx2(+/-) mice are reversed by the introduction of a Dcamkl1-null allele. Our results establish a genetic linkage between these two proteins in vivo and demonstrate that DCAMKL1 is a physiologically relevant regulator of anabolic bone formation.


Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export.

  • Haixin Lei‎ et al.
  • Nucleic acids research‎
  • 2013‎

We previously showed that mRNAs synthesized from three genes that naturally lack introns contain a portion of their coding sequence, known as a cytoplasmic accumulation region (CAR), which is essential for stable accumulation of the intronless mRNAs in the cytoplasm. The CAR in each mRNA is unexpectedly large, ranging in size from ∼160 to 285 nt. Here, we identified one or more copies of a 10-nt consensus sequence in each CAR. To determine whether this element (designated CAR-E) functions in cytoplasmic accumulation of intronless mRNA, we multimerized the most conserved CAR-E and inserted it upstream of β-globin cDNA, which is normally retained/degraded in the nucleus. Significantly, the tandem CAR-E, but not its antisense counterpart, rescued cytoplasmic accumulation of β-globin cDNA transcripts. Moreover, dinucleotide mutations in the CAR-E abolished this rescue. We show that the CAR-E, but not the mutant CAR-E, associates with components of the TREX mRNA export machinery, the Prp19 complex and U2AF2. Moreover, knockdown of these factors results in nuclear retention of the intronless mRNAs. Together, these data suggest that the CAR-E promotes export of intronless mRNA by sequence-dependent recruitment of the mRNA export machinery.


Bone Marrow Mesenchymal Stromal Cell-Derived Periostin Promotes B-ALL Progression by Modulating CCL2 in Leukemia Cells.

  • Zhenling Ma‎ et al.
  • Cell reports‎
  • 2019‎

Periostin (POSTN) is a multifunctional extracellular component that regulates cell-matrix interactions and cell-cell crosstalk. POSTN deletion significantly decreases leukemia burden in mice; however, the underlying mechanisms by which POSTN promotes B cell acute lymphoblastic leukemia (B-ALL) progression remain largely unknown. Here, we demonstrate that bone marrow (BM)-derived mesenchymal stromal cells (BM-MSCs) express higher levels of POSTN when co-cultured with B-ALL cells in vitro and in vivo. POSTN deficiency in BM-MSCs significantly decreases CCL2 expression in co-cultured B-ALL cells in vitro and in vivo. Moreover, POSTN treatment increases expression of CCL2 in B-ALL cells by activating the integrin-ILK-NF-κB pathway. Conversely, CCL2 treatment upregulates expression of POSTN in BM-MSCs via STAT3 activation. Furthermore, there is a positive correlation between POSTN expression and CCL2 level in the BM of mice and patients with B-ALL. These findings suggest that B-ALL cell-derived CCL2 contributes to the increased leukemia burden promoted by BM-MSC-derived POSTN.


Recombinant chicken interleukin-7 as a potent adjuvant increases the immunogenicity and protection of inactivated infectious bursal disease vaccine.

  • Dan Cui‎ et al.
  • Veterinary research‎
  • 2018‎

Our previous work showed that a plasmid-based chicken interleukin-7 (chIL-7) gene expression vector possessed potent adjuvant activity for a VP2 DNA vaccine against chicken infectious bursal disease virus (IBDV). Whether recombinant chIL-7 prepared in procaryotic expression system has the adjuvant activity for inactivated IBDV vaccine remains unknown. Here, we prepared recombinant chIL-7 using an E. coli expression system and analyzed its adjuvant activity for the inactivated IBDV vaccine. The results show that the recombinant chIL-7 was successfully prepared in E. coli using the pET20b vector, which possessed biological activity to stimulate mouse B lymphocyte proliferation. Co-administration of the chIL-7 with inactivated IBDV vaccine significantly increased specific serum antibody titers against IBDV, enhanced lymphocyte proliferation and IFN-γ and IL-4 productions, and increased protection against virulent IBDV infection.


Membrane-bound and soluble porcine CD83 functions antithetically in T cell activation and dendritic cell differentiation in vitro.

  • Shanshan Huo‎ et al.
  • Developmental and comparative immunology‎
  • 2019‎

Emerging evidence suggests that CD83, a dendritic cells (DCs) maturation marker in humans and mice, may prossess immunomodulatory capacities. Although porcine CD83 shares ∼75% sequence homology with its human counterpart, whether it functions as an immunoregulatory molecule remains unknown. To investigate porcine CD83 function, we deleted it in porcine DCs by RNA intereference. Results show that membrane-bound CD83 (mCD83) promotes DC-mediated T cell proliferation and cytokine production, thus confirming its immunoregulatory capacity. Intriguingly, porcine soluble CD83 (sCD83) treatment instead led to inhibition of DC-mediated T cell activation. Moreover, porcine sCD83 also inhibited differentiation of prepheral blood mononuclear cells (PBMCs) into DCs. These results collectively indicate that in addition to being a DC maturation maker, both membrane bound and souble porcine CD83 serve as immunoregulatory molecules with opposite effects on DC-mediated T cell activation and DC differentiation.


Identification of microRNA-21 target genes associated with hair follicle development in sheep.

  • Bo Zhai‎ et al.
  • PeerJ‎
  • 2019‎

The target molecule regulatory function of microRNA-21 (miR-21) in multiple signalling pathways has become a main focus of genetic and pharmacological regulatory studies of various diseases. The identification of target genes for miRNA-21 in the development of hair follicles can provide new research pathways for the regulation of cell development.


Alleviation of brain injury by applying TGN-020 in the supraoptic nucleus via inhibiting vasopressin neurons in rats of focal ischemic stroke.

  • Dan Cui‎ et al.
  • Life sciences‎
  • 2021‎

To understand mechanisms underlying vasopressin hypersecretion in stroke and its association with brain injury, we investigated effects of blocking aquaporin 4 (AQP4) in the supraoptic nucleus (SON) on vasopressin neuronal activity and cerebral injuries in male rats of unilateral middle cerebral artery occlusion (MCAO).


hsa_circ_0091570 acts as a ceRNA to suppress hepatocellular cancer progression by sponging hsa-miR-1307.

  • Yu-Gang Wang‎ et al.
  • Cancer letters‎
  • 2019‎

Alterations in circular RNA (circRNA) expression have a vital impact on the biological processes in cancer. Moreover, the expression pattern and roles of circRNAs in hepatocellular cancer (HCC) remain unclear. This study performed qRT-PCR to determine the regulated circRNAs in HCC tissues and cell lines. CCK8, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation, cell cycle assay, apoptotic assay, transwell, and wound healing assay were conducted to assess the function of hsa_circ_0091570 or miR-1307 on cell proliferation, apoptosis, and migration in vitro. Mouse xenograft models were used to measure the functions of hsa_circ_0091570 in vivo. The decreased expression of hsa_circ_0091570 was associated with the pathological staging of HCC patients. Furthermore, inhibition of hsa_circ_0091570 promoted cell proliferation and migration, blocked cell apoptosis in HCC cell lines, and promoted tumor growth in the mouse xenograft model. RNA immunoprecipitation assay verified the interaction of hsa_circ_0091570 and miR-1307. The miR-1307 inhibitor inhibited the function induced by hsa_circ_0091570 siRNA. Overall, hsa_circ_0091570 sponge miR-1307 as a ceRNA and regulate ISM1 expression by exerting functional roles in HCC.


Targeting mTORC2/HDAC3 Inhibits Stemness of Liver Cancer Cells Against Glutamine Starvation.

  • Hui-Lu Zhang‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2022‎

Cancer cells are addicted to glutamine. However, cancer cells often suffer from glutamine starvation, which largely results from the fast growth of cancer cells and the insufficient vascularization in the interior of cancer tissues. Herein, based on clinical samples, patient-derived cells (PDCs), and cell lines, it is found that liver cancer cells display stem-like characteristics upon glutamine shortage due to maintaining the stemness of tumor initiating cells (TICs) and even promoting transformation of non-TICs into stem-like cells by glutamine starvation. Increased expression of glutamine synthetase (GS) is essential for maintaining and promoting stem-like characteristics of liver cancer cells during glutamine starvation. Mechanistically, glutamine starvation activates Rictor/mTORC2 to induce HDAC3-mediated deacetylation and stabilization of GS. Rictor is significantly correlated with the expression of GS and stem marker OCT4 at tumor site, and closely correlates with poor prognosis of hepatocellular carcinomas. Inhibiting components of mTORC2-HDAC3-GS axis decrease TICs and promote xenografts regression upon glutamine-starvation therapy. Collectively, the data provides novel insights into the role of Rictor/mTORC2-HDAC3 in reprogramming glutamine metabolism to sustain stemness of cancer cells. Targeting Rictor/HDAC3 may enhance the efficacy of glutamine-starvation therapy and limit the rapid growth and malignant progression of tumors.


Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.

  • Xuewei Bai‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2022‎

Interactions between tumor and microenvironment determine individual response to immunotherapy. Triple negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) have exhibited suboptimal responses to immune checkpoint inhibitors (ICIs). Aspartate β-hydroxylase (ASPH), an oncofetal protein and tumor associated antigen (TAA), is a potential target for immunotherapy.


Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines.

  • Li Wang‎ et al.
  • Nature communications‎
  • 2022‎

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic.


Integration of ATAC-Seq and RNA-Seq reveals FOSL2 drives human liver progenitor-like cell aging by regulating inflammatory factors.

  • Min Ding‎ et al.
  • BMC genomics‎
  • 2023‎

Human primary hepatocytes (PHCs) are considered to be the best cell source for cell-based therapies for the treatment of end-stage liver disease and acute liver failure. To obtain sufficient and high-quality functional human hepatocytes, we have established a strategy to dedifferentiate human PHCs into expandable hepatocyte-derived liver progenitor-like cells (HepLPCs) through in vitro chemical reprogramming. However, the reduced proliferative capacity of HepLPCs after long-term culture still limits their utility. Therefore, in this study, we attempted to explore the potential mechanism related to the proliferative ability of HepLPCs in vitro culture.


Anticancer therapy-induced adverse drug reactions in children and preventive and control measures.

  • Hui Yan‎ et al.
  • Frontiers in pharmacology‎
  • 2024‎

In recent years, considerable achievements have been made in pediatric oncology with the innovation and development of antitumor drugs. However, compared to adults, children as a special group have not yet matured fully in terms of liver and kidney function. Moreover, pediatric patients are prone to more adverse drug reactions (ADRs) from the accumulation of antineoplastic drugs due to their smaller body size and larger body surface area. Chemotherapy-related ADRs have become a non-negligible factor that affects cancer remission. To date, studies on ADRs in pediatric cancer patients have emerged internationally, but few systematic summaries are available. Here, we reviewed the various systemic ADRs associated with antitumor drugs in children and adolescent patients, as well as the advances in strategies to cope with ADRs, which consisted of neurotoxicity, hematological toxicity, cardiotoxicity, ADRs of the respiratory system and gastrointestinal system and urinary system, ADRs of the skin and its adnexa, allergic reactions, and other ADRs. For clinicians and researchers, understanding the causes, symptoms, and coping strategies for ADRs caused by anticancer treatments will undoubtedly benefit more children.


Porcine Parvovirus Infection Causes Pig Placenta Tissue Damage Involving Nonstructural Protein 1 (NS1)-Induced Intrinsic ROS/Mitochondria-Mediated Apoptosis.

  • Jianlou Zhang‎ et al.
  • Viruses‎
  • 2019‎

Porcine parvovirus (PPV) is an important pathogen causing reproductive failure in pigs. PPV-induced cell apoptosis has been recently identified as being involved in PPV-induced placental tissue damages resulting in reproductive failure. However, the molecular mechanism was not fully elucidated. Here we demonstrate that PPV nonstructural protein 1 (NS1) can induce host cell apoptosis and death, thereby indicating the NS1 may play a crucial role in PPV-induced placental tissue damages and reproductive failure. We have found that NS1-induced apoptosis was significantly inhibited by caspase 9 inhibitor, but not caspase 8 inhibitor, and transfection of NS1 gene into PK-15 cells significantly inhibited mitochondria-associated antiapoptotic molecules Bcl-2 and Mcl-1 expressions and enhanced proapoptotic molecules Bax, P21, and P53 expressions, suggesting that NS1-induced apoptosis is mainly through the mitochondria-mediated intrinsic apoptosis pathway. We also found that both PPV infection and NS1 vector transfection could cause host DNA damage resulting in cell cycle arrest at the G1 and G2 phases, trigger mitochondrial ROS accumulation resulting in mitochondria damage, and therefore, induce the host cell apoptosis. This study provides a molecular basis for elucidating PPV-induced cell apoptosis and reproductive failure.


Long noncoding RNA EPB41L4A-AS2 inhibits hepatocellular carcinoma development by sponging miR-301a-5p and targeting FOXL1.

  • Yu-Gang Wang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

Hepatocellular carcinoma (HCC) is the major histological type of liver cancer with high morbidity and mortality worldwide. Long noncoding RNAs (lncRNA) has been proved to be associated with various cancer types, while its regulation in HCC is largely unknown.


Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells.

  • Dali Zhao‎ et al.
  • Cellular signalling‎
  • 2014‎

Sorafenib, the first-line systemic drug for advanced hepatocellular carcinoma (HCC), has demonstrated limited benefits with very low response rates. Thus it is essential to investigate the underlying mechanisms for the resistance to sorafenib and seek potential strategy to enhance its efficacy. Hypoxic cells inside solid tumors are extremely resistant to therapies as their survival ability is increased due to the cellular adaptive response to hypoxia, which is controlled by hypoxia-inducible factor (HIF)-1 and HIF-2. Sorafenib inhibits HIF-1α synthesis, making the hypoxic response switch from HIF-1α- to HIF-2α-dependent pathways and providing a mechanism for more aggressive growth of tumors. The present study has demonstrated that upregulation of HIF-2α induced by sorafenib contributes to the resistance of hypoxic HCC cells by activating the transforming growth factor (TGF)-α/epidermal growth factor receptor (EGFR) pathway. Blocking the TGF-α/EGFR pathway by gefitinib, a specific EGFR inhibitor, reduced the activation of STAT (signal transducer and activator of transcription) 3, AKT and ERK (extracellular signal-regulated kinase), and synergized with sorafenib to inhibit proliferation and induce apoptosis of hypoxic HCC cells. Transfection of HIF-2α siRNA into HCC cells downregulated the expression of VEGF (vascular endothelial growth factor), cyclin D1, HIF-2α and TGF-α, and inhibited the activation of EGFR. HIF-2α siRNA inhibited the proliferation and promoted the apoptosis of HCC cells in vitro, and synergized with sorafenib to suppress the growth of HCC tumors in vivo. The results indicate that targeting HIF-2α-mediated activation of the TGF-α/EGFR pathway warrants further investigation as a potential strategy to enhance the efficacy of sorafenib for treating HCC.


Effects of Intranasal Oxytocin on Pup Deprivation-Evoked Aberrant Maternal Behavior and Hypogalactia in Rat Dams and the Underlying Mechanisms.

  • Xiao Yu Liu‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Oxytocin (OT), a hypothalamic neuropeptide, applied through nasal approach (IAO), could improve maternal health during lactation that is disrupted by mother-baby separation; however, the regulation of IAO effects on maternal behaviors and lactation as well as the underlying mechanisms remain unclear. Using lactating rats, we observed effects of intermittent pup deprivation (PD) with and without IAO on maternal behaviors and lactation as well as the activity of OT neurons in the supraoptic nucleus (SON) and the activity of hypothalamic pituitary-adrenal axis, key factors determining the milk-letdown reflex during lactation and maternal behaviors. The results showed that PD reduced maternal behaviors and lactation efficiency of rat dams as indicated by significantly longer latency to retrieve their pups and low litter's body weight gains during the observation, respectively. In addition, PD caused early involution of the mammary glands. IAO partially improved these changes in rat dams, which was not as significant as IAO effects on control dams. In the SON, PD decreased c-Fos and increased glial fibrillary acidic protein (GFAP) filaments significantly; IAO made PD-evoked c-Fos reduction insignificant while reduced GFAP filament significantly in PD dams. IAO tended to increase the levels of phosphorylated extracellular signal-regulated kinases (pERK) 1/2 in PD dams. Moreover, PD+IAO significantly increased plasma levels of dam adrenocorticotropic hormone and corticosterone but not OT levels. Lastly, PD+IAO tended to increase the level of corticotropin-releasing hormone in the SON. These results indicate that PD disrupts maternal behaviors and lactation by suppressing the activity of hypothalamic OT-secreting system through expansion of astrocytic processes, which are partially reversed by IAO through removing astrocytic inhibition of OT neuronal activity. However, the improving effect of IAO on the maternal health could be compromised by simultaneous activation of hypothalamic pituitary-adrenocortical axis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: