Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,244 papers

Hepatitis B virus X protein amplifies TGF-β promotion on HCC motility through down-regulating PPM1a.

  • Yuan Liu‎ et al.
  • Oncotarget‎
  • 2016‎

Over-activation of transforming growth factor-β (TGF-β) signaling pathway promotes cell migration and invasion in hepatocellular carcinoma (HCC). The Hepatitis B virus X protein (HBx) is involved in the enhancement of TGF-β signaling pathway in HCC while the mechanism remains unclear. Protein phosphatase magnesium dependent 1A (PPM1a) functions as a phosphatase essential for terminating the TGF-β signaling pathway by dephosphorylating p-Smad2/3. In this study, we found that HBx dose-dependently downregulated PPM1a protein level in the presence of TGF-β, while having no effect on its mRNA level. Further study showed that HBx increased the ubiquitination of PPM1a and accelerated its proteasomal degradation. Restoration of PPM1a almost completely abrogated HBx mediated promotion on HCC migration and invasion. This involvement of PPM1a in HBx-related HCC was further confirmed with immunohistochemical analysis in HCC tissue. Compared with paired pericarcinous tissue, HCC tissue showed decreased PPM1a level. Besides, PPM1a level is negatively correlated with HBx expression. Taken together, our present study suggests that HBx-induced degradation of PPM1a is a novel mechanism for over-activation of TGF-β pathway in HCC development, which might provide potential candidates for clinical diagnosis and treatment.


Global-scale profiling of differential expressed lysine acetylated proteins in colorectal cancer tumors and paired liver metastases.

  • Zhanlong Shen‎ et al.
  • Journal of proteomics‎
  • 2016‎

Lysine acetylated modification was indicated to impact colorectal cancer (CRC)'s distant metastasis. However, the global acetylated proteins in CRC and the differential expressed acetylated proteins and acetylated sites between CRC primary and distant metastatic tumor remains unclear. Our aim was to construct a complete atlas of acetylome in CRC and paired liver metastases. Combining high affinity enrichment of acetylated peptides with high sensitive mass spectrometry, we identified 603 acetylation sites from 316 proteins, among which 462 acetylation sites corresponding to 243 proteins were quantified. We further classified them into groups according to cell component, molecular function and biological process and analyzed the metabolic pathways, domain structures and protein interaction networks. Finally, we evaluated the differentially expressed lysine acetylation sites and revealed that 31 acetylated sites of 22 proteins were downregulated in CRC liver metastases compared to that in primary CRC while 40 acetylated sites of 32 proteins were upregulated, of which HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. These results provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC.


Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis.

  • Solveig K Sieberts‎ et al.
  • Nature communications‎
  • 2016‎

Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2)=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.


Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma.

  • Matthew C Murphy‎ et al.
  • Scientific reports‎
  • 2016‎

Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.


Profiling of Small Nucleolar RNAs by Next Generation Sequencing: Potential New Players for Breast Cancer Prognosis.

  • Preethi Krishnan‎ et al.
  • PloS one‎
  • 2016‎

One of the most abundant, yet least explored, classes of RNA is the small nucleolar RNAs (snoRNAs), which are well known for their involvement in post-transcriptional modifications of other RNAs. Although snoRNAs were only considered to perform housekeeping functions for a long time, recent studies have highlighted their importance as regulators of gene expression and as diagnostic/prognostic markers. However, the prognostic potential of these RNAs has not been interrogated for breast cancer (BC). The objective of the current study was to identify snoRNAs as prognostic markers for BC. Small RNA sequencing (Illumina Genome Analyzer IIx) was performed for 104 BC cases and 11 normal breast tissues. Partek Genomics Suite was used for analyzing the sequencing files. Two independent and proven approaches were used to identify prognostic markers: case-control (CC) and case-only (CO). For both approaches, snoRNAs significant in the permutation test, following univariate Cox proportional hazards regression model were used for constructing risk scores. Risk scores were subsequently adjusted for potential confounders in a multivariate Cox model. For both approaches, thirteen snoRNAs were associated with overall survival and/or recurrence free survival. Patients belonging to the high-risk group were associated with poor outcomes, and the risk score was significant after adjusting for confounders. Validation of representative snoRNAs (SNORD46 and SNORD89) using qRT-PCR confirmed the observations from sequencing experiments. We also observed 64 snoRNAs harboring piwi-interacting RNAs and/or microRNAs that were predicted to target genes (mRNAs) involved in tumorigenesis. Our results demonstrate the potential of snoRNAs to serve (i) as novel prognostic markers for BC and (ii) as indirect regulators of gene expression.


Directing and Potentiating Stem Cell-Mediated Angiogenesis and Tissue Repair by Cell Surface E-Selectin Coating.

  • Zhao-Jun Liu‎ et al.
  • PloS one‎
  • 2016‎

Stem cell therapy has emerged as a promising approach for treatment of a number of diseases, including delayed and non-healing wounds. However, targeted systemic delivery of therapeutic cells to the dysfunctional tissues remains one formidable challenge. Herein, we present a targeted nanocarrier-mediated cell delivery method by coating the surface of the cell to be delivered with dendrimer nanocarriers modified with adhesion molecules. Infused nanocarrier-coated cells reach to destination via recognition and association with the counterpart adhesion molecules highly or selectively expressed on the activated endothelium in diseased tissues. Once anchored on the activated endothelium, nanocarriers-coated transporting cells undergo transendothelial migration, extravasation and homing to the targeted tissues to execute their therapeutic role. We now demonstrate feasibility, efficacy and safety of our targeted nanocarrier for delivery of bone marrow cells (BMC) to cutaneous wound tissues and grafted corneas and its advantages over conventional BMC transplantation in mouse models for wound healing and neovascularization. This versatile platform is suited for targeted systemic delivery of virtually any type of therapeutic cell.


Dissection of early transcriptional responses to water stress in Arundo donax L. by unigene-based RNA-seq.

  • Yuan Fu‎ et al.
  • Biotechnology for biofuels‎
  • 2016‎

Arundo donax L. (Poaceae) is considered one of the most promising energy crops in the Mediterranean region because of its high biomass yield and low input requirements, but to date no information on its transcriptional responses to water stress is available.


Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of Ramie (Boehmeria nivea L. Gaud).

  • Xing Huang‎ et al.
  • PloS one‎
  • 2014‎

In vitro organogenesis, one of the most common pathways leading to in vitro plant regeneration, is widely used in biotechnology and the fundamental study of plant biology. Although previous studies have constructed a complex regulatory network model for Arabidopsis in vitro organogenesis, no related study has been reported in ramie. To generate more complete observations of transcriptome content and dynamics during ramie in vitro organogenesis, we constructed a reference transcriptome library and ten digital gene expression (DGE) libraries for illumina sequencing. Approximately 111.34 million clean reads were obtained for transcriptome and the DGE libraries generated between 13.5 and 18.8 million clean reads. De novo assembly produced 43,222 unigenes and a total of 5,760 differentially expressed genes (DEGs) were filtered. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database, 26 auxin related and 11 cytokinin related DEGs were selected for qRT-PCR validation of two ramie cultivars, which had high (Huazhu No. 5) or extremely low (Dazhuhuangbaima) shoot regeneration abilities. The results revealed differing regulation patterns of auxin and cytokinin in different genotypes. Here we report the first genome-wide gene expression profiling of in vitro organogenesis in ramie and provide an overview of transcription and phytohormone regulation during the process. Furthermore, the auxin and cytokinin related genes have distinct expression patterns in two ramie cultivars with high or extremely low shoot regeneration ability, which has given us a better understanding of the in vitro organogenesis mechanism. This result will provide a foundation for future phytohormone research and lead to improvements of the ramie regeneration system.


The quantum of initial transformed cells potentially modulates the type of local inflammation mechanism elicited by surrounding normal epithelial tissues and systemic immune pattern for tumor arrest or progression.

  • Lawrence Owusu‎ et al.
  • Journal of Cancer‎
  • 2015‎

The immune/ inflammation system potentially serves to arrest, eliminate or promote tumor development. Nonetheless, factors that dictate the choice are not comprehensively known yet. Using a B16/F1 syngeneic wild type model, we evaluated the essentiality of initial transformed cells' density for overt tumor development, the molecular trends of inflammatory mediators in the normal tumor-adjacent epithelial tissues (NTAT), and how such local events may reflect systematically in the host. Overt tumors developed, within an observatory period of at least 45 days and 90 days at most, only in mice inoculated with cancer cells above a limiting threshold of 1× 10(3) cells. Immunoblots showed early, intense and transient presence of IL-1β, IFN-γ, and both the all-thiol and disulfide forms of HMGB1 in the NTAT of non-tumor bearing mice. However, all-thiol form of HMGB1 and delayed but aberrant IL-6 expression characterized chronic inflammation in tumor bearing hosts. These local epithelial tissue events uniquely reflected in host's systemic cytokines dynamics where stable Th1/Th2 signature (IFN-γ/ IL-4) coupled with early Th1 cells polarization (IL-12/ IL-4) evidenced in non-tumor hosts but highly fluctuating Th1/ Th2 profile in tumor hosts, even before tumors became overt. This hypothesizes that the physical quantum of transformed cells that may either spontaneously arise or accrue at a locus may be crucial in orchestrating the mechanism for the type of local epithelial tissue and systemic immune/ inflammatory responses essential for tumor progression or arrest.


Local origin of two vegetative compatibility groups of Fusarium oxysporum f. sp. vasinfectum in Australia.

  • Bo Wang‎ et al.
  • Evolutionary applications‎
  • 2010‎

Pathogenicity and genetic diversity of Fusarium oxysporum from geographically widespread native Gossypium populations, including a cotton growing area believed to be the center of origin of VCG 01111 and VCG 01112 of F. oxysporum f. sp. vasinfectum (Fov) in Australia, was determined using glasshouse bioassays and AFLPs. Five lineages (A-E) were identified among 856 isolates. Of these, 12% were strongly pathogenic on cotton, 10% were weakly pathogenic and designated wild Fov, while 78% were nonpathogenic. In contrast to the occurrence of pathogenic isolates in all five lineages in soils associated with wild Gossypium, in cotton growing areas only three lineages (A, B, E) occurred and all pathogenic isolates belonged to two subgroups in lineage A. One of these contained VCG 01111 isolates while the other contained VCG 01112 isolates. Sequence analyses of translation elongation factor-1α, mitochondrial small subunit rDNA, nitrate reductase and phosphate permease confirmed that Australian Fov isolates were more closely related to lineage A isolates of native F. oxysporum than to Fov races 1-8 found overseas. These results strongly support a local evolutionary origin for Fov in Australian cotton growing regions.


Stress responses to trichlorophenol in Arabidopsis and integrative analysis of alteration in transcriptional profiling from microarray.

  • Zhenjun Li‎ et al.
  • Gene‎
  • 2015‎

Trichlorophenols, also known as TCPs, are one of the most persistent environmental pollutants. It is a matter of concern as they are toxic and cumulative in soil and water bodies which could lead to serious consequences to the biosphere. How plants respond to this compound has rarely been examined previously. In our study, detailed morphological and physiological responses of Arabidopsis to 2,4,6-trichlorophenol, a representative TCP, were investigated. Seed germination and seedling growth were markedly inhibited by 2,4,6-TCP. Furthermore, we performed gene expression profiling analysis upon 2,4,6-TCP treatment in Arabidopsis and identified 34 transcripts induced and 212 repressed more than four folds. Gene Ontology (GO) analysis showed that these TCP-responsive genes are involved in various biological processes, such as secondary metabolism, biological regulation, response to stimulus and other processes related to growth and development. The activities of two reactive oxygen species-related enzymes (peroxidase and superoxide dismutase) and the content of malondialdehyde were increased significantly after 2,4,6-TCP treatment. Our findings have the potential to provide valuable gene resources and theoretical information for more in-depth analyses of TCPs' response in Arabidopsis thaliana and even other organic pollutants.


A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1.

  • Bo Wang‎ et al.
  • Oncotarget‎
  • 2015‎

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide, and it has been linked to radiation exposure. As a well-defined oncogene, wild-type p53-induced phosphatase 1 (WIP1) plays an inhibitory role in several tumor suppressor pathways, including p53. WIP1 is amplified and overexpressed in many malignancies, including HCC. However, the underlying mechanisms remain largely unknown. Here, we show that low-dose ionizing radiation (IR) induces miR-29c expression in female mouse liver, while inhibiting its expression in HepG2, a human hepatocellular carcinoma cell line which is used as a model system in this study. miR-29c expression is downregulated in human hepatocellular carcinoma cells, which is inversely correlated with WIP1 expression. miR-29c attenuates luciferase activity of a reporter harboring the 3'UTR binding motif of WIP1 mRNA. Ectopic expression of miR-29c significantly represses cell proliferation and induces apoptosis and G1 arrest in HepG2. In contrast, the knockdown of miR-29c greatly enhances HepG2 cell proliferation and suppresses apoptosis. The biological effects of miR-29c may be mediated by its target WIP1 which regulates p53 activity via dephosphorylation at Ser-15. Finally, fluorescence in situ hybridization (FISH) and immunohistochemical analyses indicate that miR-29c is downregulated in 50.6% of liver carcinoma tissues examined, whereas WIP1 is upregulated in 45.4% of these tissues. The expression of miR-29c inversely correlates with that of WIP1 in HCC. Our results suggest that the IR-responsive miR-29c may function as a tumor suppressor that plays a crucial role in the development of liver carcinoma via targeting WIP1, therefore possibly representing a target molecule for therapeutic intervention for this disease.


An integrated system for identifying the hidden assassins in traditional medicines containing aristolochic acids.

  • Lan Wu‎ et al.
  • Scientific reports‎
  • 2015‎

Traditional herbal medicines adulterated and contaminated with plant materials from the Aristolochiaceae family, which contain aristolochic acids (AAs), cause aristolochic acid nephropathy. Approximately 256 traditional Chinese patent medicines, containing Aristolochiaceous materials, are still being sold in Chinese markets today. In order to protect consumers from health risks due to AAs, the hidden assassins, efficient methods to differentiate Aristolochiaceous herbs from their putative substitutes need to be established. In this study, 158 Aristolochiaceous samples representing 46 species and four genera as well as 131 non-Aristolochiaceous samples representing 33 species, 20 genera and 12 families were analyzed using DNA barcodes based on the ITS2 and psbA-trnH sequences. Aristolochiaceous materials and their non-Aristolochiaceous substitutes were successfully identified using BLAST1, the nearest distance method and the neighbor-joining (NJ) tree. In addition, based on sequence information of ITS2, we developed a Real-Time PCR assay which successfully identified herbal material from the Aristolochiaceae family. Using Ultra High Performance Liquid Chromatography-Mass Spectrometer (UHPLC-HR-MS), we demonstrated that most representatives from the Aristolochiaceae family contain toxic AAs. Therefore, integrated DNA barcodes, Real-Time PCR assays using TaqMan probes and UHPLC-HR-MS system provides an efficient and reliable authentication system to protect consumers from health risks due to the hidden assassins (AAs).


Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection.

  • Bo Wang‎ et al.
  • Parasites & vectors‎
  • 2015‎

Fruit flies and mammals protect themselves against infection by mounting immune and metabolic responses that must be balanced against the metabolic needs of the pathogens. In this context, p38 mitogen-activated protein kinase (MAPK)-dependent signaling is critical to regulating both innate immunity and metabolism during infection. Accordingly, we asked to what extent the Asian malaria mosquito Anopheles stephensi utilizes p38 MAPK signaling during infection with the human malaria parasite Plasmodium falciparum.


Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer.

  • Preethi Krishnan‎ et al.
  • BMC genomics‎
  • 2015‎

Prognostication of Breast Cancer (BC) relies largely on traditional clinical factors and biomarkers such as hormone or growth factor receptors. Due to their suboptimal specificities, it is challenging to accurately identify the subset of patients who are likely to undergo recurrence and there remains a major need for markers of higher utility to guide therapeutic decisions. MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional regulators of gene expression and have shown promise as potential prognostic markers in several cancer types including BC.


Overexpression of Long Non-Coding RNA HOTAIR Promotes Tumor Growth and Metastasis in Human Osteosarcoma.

  • Bo Wang‎ et al.
  • Molecules and cells‎
  • 2015‎

Human osteosarcoma usually presented a high tendency to metastatic spread and caused poor outcomes, however, the underlying mechanism was still largely unknown. In the present study, using a series of in vitro experiments and an animal model, we investigated the roles of HOX antisense intergenic RNA (HOTAIR) during the proliferation and invasion of osteosarcoma. According with our results, HOTAIR was commonly overexpressed in osteosarcoma, which significantly correlated with advanced tumor stage, highly histological grade and poor prognosis. In vitro and in vivo experiments demonstrated that knockdown of HOTAIR could notably suppress cellular proliferation, inhibit invasion and decrease the secretion of MMP2 and MMP9 in osteosarcoma. Collectively, our results suggested that HOTAIR might be a potent therapeutic target for osteosarcoma.


C5b-9-targeted molecular MR imaging in rats with Heymann nephritis: a new approach in the evaluation of nephrotic syndrome.

  • Qiang Huang‎ et al.
  • PloS one‎
  • 2015‎

Membranous nephropathy (MN) is the major cause of adult nephrotic syndrome, which severely affects patients' quality of life. Currently, percutaneous renal biopsy is required to definitively diagnose MN. However, this technique is invasive and may cause severe complications. Therefore, an urgent clinical need exists for dynamic noninvasive monitoring of the renal state. In-depth molecular imaging studies could assist in finding a solution. Membrane attack complex C5b-9 is the key factor in the development of MN, and this protein primarily deposits in the glomerulus. The present study bound polyclonal antibodies to C5b-9 with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to obtain C5b-9-targeted magnetic resonance molecular imaging probes. The probes were injected intravenously into rats with Heymann nephritis, a classic disease model of MN. The signal intensity in the T2*-weighted imaging of kidneys in vivo using 7.0 Tesla magnetic resonance imaging decreased significantly 24 hours after injection compared to the untargeted and control groups. This signal change was consistent with the finding of nanoparticle deposits in pathological glomeruli. This study demonstrated a novel molecular imaging technique for the assessment of MN.


GroupRank: rank candidate genes in PPI network by differentially expressed gene groups.

  • Qing Wang‎ et al.
  • PloS one‎
  • 2014‎

Many cell activities are organized as a network, and genes are clustered into co-expressed groups if they have the same or closely related biological function or they are co-regulated. In this study, based on an assumption that a strong candidate disease gene is more likely close to gene groups in which all members coordinately differentially express than individual genes with differential expression, we developed a novel disease gene prioritization method GroupRank by integrating gene co-expression and differential expression information generated from microarray data as well as PPI network. A candidate gene is ranked high using GroupRank if it is differentially expressed in disease and control or is close to differentially co-expressed groups in PPI network. We tested our method on data sets of lung, kidney, leukemia and breast cancer. The results revealed GroupRank could efficiently prioritize disease genes with significantly improved AUC value in comparison to the previous method with no consideration of co-expressed gene groups in PPI network. Moreover, the functional analyses of the major contributing gene group in gene prioritization of kidney cancer verified that our algorithm GroupRank not only ranks disease genes efficiently but also could help us identify and understand possible mechanisms in important physiological and pathological processes of disease.


SUV39H1 downregulation induces deheterochromatinization of satellite regions and senescence after exposure to ionizing radiation.

  • Corinne Sidler‎ et al.
  • Frontiers in genetics‎
  • 2014‎

While the majority of cancer patients are exposed to ionizing radiation during diagnostic and therapeutic procedures, age-dependent differences in radiation sensitivity are not yet well understood. Radiation sensitivity is characterized by the appearance of side effects to radiation therapy, such as secondary malignancies, developmental deficits, and compromised immune function. However, the knowledge of the molecular mechanisms that trigger these side effects is incomplete. Here we used an in vitro system and showed that low-senescent normal human diploid fibroblasts (WI-38) senesce in response to 5 Gy IR, while highly senescent cultures do not show changes in cell cycle regulation and only a slight increase in the percentage of senescent cells. Our study shows that this is associated with changes in the expression of genes responsible for cell cycle progression, apoptosis, DNA repair, and aging, as well as transcriptional and epigenetic regulators. Furthermore, we propose a role of the downregulation of SUV39H1 expression, a histone methyltransferase that specifically trimethylates H3K9, and the corresponding reduction in H3K9me3 levels in the establishment of IR-induced senescence.


A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls.

  • Jyotsna L Pandey‎ et al.
  • PloS one‎
  • 2015‎

Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: