Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Marine collagen peptides reduce endothelial cell injury in diabetic rats by inhibiting apoptosis and the expression of coupling factor 6 and microparticles.

  • Cuifeng Zhu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The present study aimed to elucidate the role of marine collagen peptides (MCPs) in protection of carotid artery vascular endothelial cells (CAVECs) in type 2 diabetes mellitus (T2DM), and the mechanism underlying this process. In an in vivo experiment, diabetic Wistar rats were divided randomly into four groups (n=10/group): Diabetes control, and three diabetes groups administered low, medium and high doses of MCPs (2.25, 4.5 and 9.0 g/kg body weight/day, respectively). Another 10 healthy rats served as the control. In an in vitro experiment, human umbilical‑vein endothelial cells (HUVECs) were incubated in normal and high concentrations of glucose with or without MCPs (3.0, 15.0 and 30.0 mg/ml, respectively) for 24, 48 or 72 h. Blood vessel/endothelial construction, inflammatory exudation and associated molecular biomarkers in CAVECs were detected and analyzed. The results of the present study demonstrated that in rats, MCP treatment for 4 weeks significantly lowered blood glucose and attenuated endothelial thinning and inflammatory exudation in carotid‑artery vascular endothelial cells. In vitro, the high‑glucose intervention significantly increased cell apoptosis in HUVECs, and medium and high doses of MCPs (4.5 and 9.0 g/kg body weight/day, respectively) partially ameliorated this high glucose‑mediated apoptosis and decreased levels of apoptosis biomarkers. In conclusion, a moderate oral MCP dose (≥4.5 g/kg body weight/day) may be a novel therapeutic tool to protect against early cardiovascular complications associated with T2DM by inhibiting apoptosis and reducing the expression of coupling factor 6 and microparticles.


Effect of F11R Gene Knockdown on Malignant Biological Behaviors of Pancreatic Cancer Cells.

  • HaiDi Zhang‎ et al.
  • Journal of oncology‎
  • 2022‎

F11R receptor (F11R/junctional adhesion molecule-A/F11R-A) is preferentially concentrated at tight junctions and influences epithelial cell morphology and migration. Numerous studies have shown that the aberrant expression of F11R contributes to tumor progression including pancreatic cancer. However, the significance of F11R in various tumors is controversial, and the role of F11R in regulating the malignant behaviors of human pancreatic cancer is unknown. To investigate the role of F11R in the carcinogenesis of pancreatic cancer and the potential targets of F11R as a therapeutic target for pancreatic cancer, we knocked down F11R in the pancreatic cancer cell line PANC-1 using lentiviral approaches. We found that F11R silencing led to decreased cell proliferation, a loss of cell invasiveness, cell cycle arrest in the G1 phase, and enhanced cell apoptosis. The present results suggest that F11R may be a promising therapeutic target for pancreatic cancer.


Discovery of a novel and potent inhibitor with differential species-specific effects against NLRP3 and AIM2 inflammasome-dependent pyroptosis.

  • Yan Jiao‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

The NLRP3 inflammasome, which regulated a proinflammatory programmed cell death form termed pyroptosis, is involved in the pathological process of various human diseases, such as multiple sclerosis, type 2 diabetes, and gout. Thus, compounds inhibiting activation of the NLRP3 inflammasome can be promising treatments for these diseases. In this study, we conducted a phenotypic screening against NLRP3-dependent pyroptosis and discovered the hit compound 1, which showed moderate antipyroptotic activity. Chemistry efforts to improve potency of 1 resulted in a novel compound 59 (J114), which exhibited a half-maximal inhibitory concentration (IC50) of 0.077 ± 0.008 μM against cell pyroptosis. Interestingly, unlike all pyroptosis inhibitors currently reported, the activity of J114 showed significant differences in human- and mouse-derived cells. The IC50 of J114-mediated inhibition of IL-1β secretion by human THP-1 macrophages was 0.098 μM, which was nearly 150-fold and 500-fold more potent than that of J774A.1 (14.62 μM) and bone marrow-derived macrophages (BMDMs) (48.98 μM), respectively. Further studies showed that J114 displayed remarkable inhibitory activity against NLRP3- and AIM2-but not NLRC4-dependent activation of caspase-1 and the release of IL-1β in human THP-1 macrophages. Mechanistically, J114 disturbed the interaction of NLRP3 or AIM2 with the adaptor protein ASC and inhibited ASC oligomerization. Overall, our study identified a unique molecule that inhibits NLRP3 and AIM2 inflammasome activation and has species differences, which is worthy of further research to understand the differential regulation of the NLRP3 and AIM2 inflammasomes in humans and mice.


Polyclonal rabbit anti-murine plasmacytoma cell globulins induce myeloma cells apoptosis and inhibit tumour growth in mice.

  • Bo Mu‎ et al.
  • Apoptosis : an international journal on programmed cell death‎
  • 2011‎

Multiple myelomas (MMs) are etiologically heterogeneous and there are limited treatment options; indeed, current monoclonal antibody therapies have had limited success, so more effective antibodies are urgently needed. Polyclonal antibodies are a possible alternative because they target multiple antigens simultaneously. In this study, we produced polyclonal rabbit anti-murine plasmacytoma cell immunoglobulin (PAb) by immunizing rabbits with the murine plasmacytoma cell line MPC-11. The isolated PAb bound to plasma surface antigens in several MM cell lines, inhibited their proliferation as revealed by MTT assay, and induce apoptosis as indicated by flow cytometry, microscopic observation of apoptotic changes in morphology, and DNA fragmentation on agarose gels. The cytotoxicity of PAb on MPC-11 cell lines was both dose-dependent and time-dependent; PAb exerted a 50% inhibitory effect on MPC-11 cell viability at a concentration of 200 µg/ml in 48 h. Flow cytometry demonstrated that PAb treatment significantly increased the number of apoptotic cells (48.1%) compared with control IgG (8.3%). Apoptosis triggered by PAb was confirmed by activation of caspase-3, -8, and -9. Serial intravenous or intraperitoneal injections of PAb inhibited tumour growth and prolonged survival in mice bearing murine plasmacytoma, while TUNEL assay demonstrated that PAb induced statistically significant apoptosis (P < 0.05) compared to control treatments. We conclude that PAb is an effective agent for in vitro and in vivo induction of apoptosis in multiple myeloma and that exploratory clinical trials may be warranted.


Screening of multiple myeloma by polyclonal rabbit anti-human plasmacytoma cell immunoglobulin.

  • Bo Mu‎ et al.
  • PloS one‎
  • 2013‎

Antibody-based immunotherapy has been effectively used for tumor treatment. However, to date, only a few tumor-associated antigens (TAAs) or therapeutic targets have been identified. Identification of more immunogenic antigens is essential for improvements in multiple myeloma (MM) diagnosis and therapy. In this study, we synthesized a polyclonal antibody (PAb) by immunizing rabbits with whole human plasmacytoma ARH-77 cells and identified MM-associated antigens, including enlonase, adipophilin, and HSP90s, among others, via proteomic technologies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that 200 µg/mL PAb inhibits the proliferation of ARH-77 cells by over 50% within 48 h. Flow cytometric assay indicated that PAb treatment significantly increases the number of apoptotic cells compared with other treatments (52.1% vs. NS, 7.3% or control rabbit IgG, 9.9%). In vivo, PAb delayed tumor growth and prolonged the lifespan of mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that PAb also induces statistically significant changes in apoptosis compared with other treatments (P<0.05). We therefore conclude that PAb could be used for the effective screening and identification of TAA. PAb may have certain anti-tumor functions in vitro and in vivo. As such, its combination with proteomic technologies could be a promising approach for sieving TAA for the diagnosis and therapy of MM.


Non-classical ferroptosis inhibition by a small molecule targeting PHB2.

  • Wei Yang‎ et al.
  • Nature communications‎
  • 2022‎

Ferroptosis is a new type of programmed cell death characterized by iron-dependent lipid peroxidation. Ferroptosis inhibition is thought as a promising therapeutic strategy for a variety of diseases. Currently, a majority of known ferroptosis inhibitors belong to either antioxidants or iron-chelators. Here we report a new ferroptosis inhibitor, termed YL-939, which is neither an antioxidant nor an iron-chelator. Chemical proteomics revealed the biological target of YL-939 to be prohibitin 2 (PHB2). Mechanistically, YL-939 binding to PHB2 promotes the expression of the iron storage protein ferritin, hence reduces the iron content, thereby decreasing the susceptibility to ferroptosis. We further showed that YL-939 could substantially ameliorate liver damage in a ferroptosis-related acute liver injury model by targeting the PHB2/ferritin/iron axis. Overall, we identified a non-classical ferroptosis inhibitor and revealed a new regulation mechanism of ferroptosis. These findings may present an attractive intervention strategy for ferroptosis-related diseases.


IL10-modified Human Mesenchymal Stem Cells inhibit Pancreatic Cancer growth through Angiogenesis Inhibition.

  • Chunyan Zhao‎ et al.
  • Journal of Cancer‎
  • 2020‎

In the present study, we constructed the recombinant plasmid IL10-PEGFP-C1 and successfully transfected into human mesenchymal stem cells. After culturing for 72 h, the levels of IL6 and TNF-α in the supernatant of the MSCs-IL10 group were significantly lower than the vector group and the control group (17.6 ± 0.68vs73.8 ± 0.8 and 74.4 ± 1.5) µg/L and (65.05 ± 3.8 vs 203.2 ± 2.4 and 201.3 ± 3.7) µg/L, respectively (p < 0.001) .The animal experiments showed that the volume of subcutaneous tumors in the MSCs-IL10 group in vivo was a significantly less level compared to that in MSC control and the blank control groups (76.84 ± 20.11) mm3 vs (518. 344 ± 48.66) mm3, (576.99± 49.88) mm3, (P < 0. 05) and they have a longer life time. Further we found the mass concentrations of IL6 and TNF-α in the blood serum of MSC-IL10 group were lower than the vector group and the control group (64.42 ± 10.9 vs120.83 ± 15.52 and 122.65 ± 13.71) and (40.05 ± 5.63 vs 126.78 ±1.89 and 105.83 ± 2.16) µg/L respectively (p < 0.001). CD31 immunohistochemistry and alginate encapsulation experiments showed tumor angiogenesis were inhibited in MSCs-IL10 group in comparison to the control and vector group (P < 0.001), FITC-labeled dextran intake was also lower than the other groups (P < 0.01). Collectively, this study suggested IL10 could inhibit the growth of the transplanted tumor in vivo and prolong survival of mice, and the primary mechanism may be the indirect inhibition of pro-inflammatory cytokines IL6 and TNF-α secretion and tumor angiogenesis formation.


Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo.

  • Jian-Cai Tang‎ et al.
  • Journal of Cancer‎
  • 2018‎

Increasing evidences indicate that shikonin can suppress the tumor growth. However, the mechanisms remain elusive. In the present study, we investigated the effects and mechanisms of shikonin against esophageal cancer. The expression of hypoxia inducible factor 1α (HIF1α) and pyruvate kinase M2 (PKM2) in esophageal cancer tissues and cells was detected by immunohistochemistry and Western blot. CCK-8 was used to examine the esophageal cancer cell viability. Apoptosis and cell cycle were analyzed by flow cytometry. The expression of EGFR, PI3K, Akt, p-AKT, mTOR, HIF1α and PKM2 was detected by Western blot. EC109/pkm2 was established by lentivirus transducer. Ec109 tumor model was founded to observe the antitumor effect of shikonin in vivo. We found that HIF1α and PKM2 protein expression levels were higher in esophageal cancer tissues and cells than normal esophageal tissues and cells. Shikonin reduced esophageal cancer cells viability and induced cell cycle arrest and apoptosis. Shikonin decreased EGFR, PI3K, p-AKT, HIF1α and PKM2 expression. Overexpression of PKM2 could enhance resistance of esophageal cancer cells to shikonin. In vivo we found that shikonin reduced tumor burden, inducing cell arrest and apoptosis. Taken together, shikonin has a significant antitumor effect in the esophageal cancer by regulating HIF1α/PKM2 signal pathway.


SATB1 plays an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB.

  • Guiqin Song‎ et al.
  • Oncotarget‎
  • 2017‎

Esophageal cancer is a highly aggressive malignancy with very poor overall prognosis. Given the strong clinical relevance of SATB1 in esophagus cancer and other cancers suggested by previous studies, the exact function of SATB1 in esophagus cancer development is still unknown. Here we showed that the knockdown of SATB1 in esophageal cancer cell lines diminished the cell proliferation, survival and invasion. Whole genome transcriptome analysis of SATB1 knockdown cells revealed the different gene expression profiles between TE-1 cells and MDA-MB-231 cells. Network analysis and functional experiments further identified FN1 and PDGFRB to be key downstream genes regulated by SATB1 in esophageal cancer cells. Importantly, FN1 and PDGFRB were found to be highly expressed in human esophageal cancer. In summary, we provided the first molecular evidence that SATB1 played an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB.


The Effects and Mechanisms by which Saikosaponin-D Enhances the Sensitivity of Human Non-small Cell Lung Cancer Cells to Gefitinib.

  • Jian-Cai Tang‎ et al.
  • Journal of Cancer‎
  • 2019‎

Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR)-sensitive mutations benefit from epidermal growth factor receptor tyrosine kinase inhibitors (EGFR- TKIs). However, drug resistance is a major cause of therapeutic failure. This study examined whether saikosaponin-d (SSD) enhances the anti-tumor effect of gefitinib in NSCLC cells. Cell Counting Kit-8 (CCK-8) was used to determine cell viability. Cell apoptosis was examined by flow cytometry. Signal transducer and activator of transcription (STAT3), phosphor-STAT3 (P-STAT3), and B-cell lymphoma 2 (Bcl-2) were detected by Western blot. An HCC827/GR tumor model was established to observe the effect of combination therapy in vivo. The combination of SSD with gefitinib had an enhanced inhibitory effect by reducing cell viability and inducing cells apoptosis in NSCLC cells. Furthermore, SSD decreased and increased the expression of P-STAT3 and Bcl-2, respectively. Down-regulated STAT3 promoted the sensitivity of lung cancer cells to gefitinib. The results of animal experiments also showed that SSD enhanced the anti-tumor effect of gefitinib. These results indicated that the combination of SSD with gefitinib had an increased antitumor effect in NSCLC cells and that the molecular mechanisms were associated with the inhibition of STAT3/Bcl-2 signaling pathway. Our findings suggest a promising approach for the treatment of NSCLC patients with EGFR-TKI resistance.


Wild‑type KRAS inhibits the migration and invasion of pancreatic cancer through the Wnt/β‑catenin pathway.

  • Xianhua Hu‎ et al.
  • Molecular medicine reports‎
  • 2023‎

Kirsten rat sarcoma virus (KRAS) mutation is considered to be the event that leads to the initiation of pancreatic ductal adenocarcinoma (PDAC), the mutation frequency of the KRAS gene in PDAC is 90‑95%. Studies have shown that wild‑type KRAS (KRASWT) has a survival advantage in PDAC and can antagonize the effect of mutated KRAS G12D (KRASG12D), leading to a low cell transformation efficiency. The present study focused on the differences in biological behavior between KRASWT and KRASG12D and explored the mechanism in pancreatic cancer. Overexpressed KRASWT and KRASG12D was transfected into cells through lentiviral transfection. The differences and mechanisms were explored using cell counting kit‑8 (CCK‑8), clone formation, wound healing and Transwell assays, as well as western blotting, immunohistochemistry and tumor formation in nude mice. In vitro, the proliferation of KRASWT group was reduced compared with PANC‑1 group, while the proliferation of KRASG12D group was not significantly changed. In vivo, the proliferation of KRASWT group was reduced and that of KRASG12D group was enhanced compared with that in the PANC‑1 group. The invasion and migration of KRASWT group were decreased, while the invasion and migration of KRASG12D group were increased. Western blotting showed that the expression of E‑cadherin, α‑E‑catenin, MMP‑3, MMP‑9, STAT3 and phosphorylated STAT3 in KRASWT group was increased, while no significant difference was observed in KRASG12D group. The results of immunohistochemistry were consistent with those of western blotting. KRASWT group can inhibit the proliferation of pancreatic cancer in vitro and in vivo, while KRASG12D group can significantly promote proliferation in vivo, but not significantly in vitro. Wild‑type KRAS may inhibit the invasion and migration of pancreatic cancer through the Wnt/β‑catenin pathway.


Discovery of a potent, selective and cell active inhibitor of m6A demethylase ALKBH5.

  • Zhen Fang‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

AlkB homolog 5 (ALKBH5) is an RNA m6A demethylase involved in the regulation of genes transcription, translation and metabolism and has been considered as a promising therapeutic target for various human diseases, especially cancers. However, there is still a lack of potent and selective ALKBH5 inhibitors. Herein, we report a new class of ALKBH5 inhibitors containing the 1-aryl-1H-pyrazole scaffold, which were obtained through fluorescence polarization-based screening, structural optimization and structure-activity relationship analysis. Among these compounds, 20m was the most potent one, which showed an IC50 value of 0.021 μM in fluorescence polarization assay. Compound 20m exhibited high selectivity towards ALKBH5 versus FTO as well as other AlkB subfamily members, indicating good selectivity for ALKBH5. Cellular thermal shift assay (CETSA) analysis showed that 20m could efficiently stabilize ALKBH5 in HepG2 cells. Dot blot assay demonstrated that 20m could increase m6A level in intact cells. Collectively, 20m is a potent, selective and cell active ALKBH5 inhibitor and could be used as a versatile chemical probe to explore the biological function of ALKBH5.


Discovery of a potent and highly selective inhibitor of ataxia telangiectasia mutated and Rad3-Related (ATR) kinase: Structural activity relationship and antitumor activity both in vitro and in vivo.

  • Huachao Bin‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

Ataxia telangiectasia mutated and Rad3-related (ATR) kinase is an important regulator of the DNA damage response (DDR), especially in response to replication stress (RS). Tumor cells with ataxia-telangiectasia mutated (ATM) kinase loss of function or DDR defects that promote replicative stress are often more reliant on ATR for survival, highlighting ATR as a good antitumor target under the principle of synthetic lethality. Herein we report the discovery of a potent and highly selective ATR inhibitor, SKLB-197, which was obtained through structural optimization and structure-activity relationship (SAR) studies towards a hit compound (Cpd-1). SKLB-197 showed an IC50 value of 0.013 μM against ATR but very weak or no activity against other 402 protein kinases. It displayed potent antitumor activity against ATM-deficent tumors both in vitro and in vivo. In addition, this compound exhibited good pharmacokinetic properties. Overall, SKLB-197 could be a promising lead compound for drug discovery targeting ATR and deserves further in-depth studies.


Potential applications of prognostic and immunological marker transmembrane serine proteinase 2 in prediction, prevention and personalized treatment of lung cancer.

  • Bo Mu‎ et al.
  • European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP)‎
  • 2023‎

Transmembrane serine proteinase 2 (TMPRSS2), which is an essential serine protease for priming spike protein of SARS-CoV-2, was found in low expression in many cancer tissue including lung cancer. However, the mechanism of severely downregulated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) was not reported yet; the correlation between TMPRSS2 and prognosis in LUAD and LUSC is also not clear. In our present research, we found that TMPRSS2 was severely downregulated in LUAD and LUSC, and the expression of TMPRSS2 in LUAD is much lower than that of LUSC. Low TMPRSS2 expression was an independent prognostic factor for poor OS in LUAD, but not in LUSC patients. Promoter hypermethylation is one of the results of TMPRSS2 downregulated in LUAD and LUSC, whereas copy-number alteration is another reason for TMPRSS2 downregulated in LUAD but not LUSC. Then, low TMPRSS2 expression has higher prognostic value in LUAD and may be due to different immune environments and different enriched immune cells subgroups.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: