Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 264 papers

Proteomics, pathway array and signaling network-based medicine in cancer.

  • David Y Zhang‎ et al.
  • Cell division‎
  • 2009‎

Cancer is a multifaceted disease that results from dysregulated normal cellular signaling networks caused by genetic, genomic and epigenetic alterations at cell or tissue levels. Uncovering the underlying protein signaling network changes, including cell cycle gene networks in cancer, aids in understanding the molecular mechanism of carcinogenesis and identifies the characteristic signaling network signatures unique for different cancers and specific cancer subtypes. The identified signatures can be used for cancer diagnosis, prognosis, and personalized treatment. During the past several decades, the available technology to study signaling networks has significantly evolved to include such platforms as genomic microarray (expression array, SNP array, CGH array, etc.) and proteomic analysis, which globally assesses genetic, epigenetic, and proteomic alterations in cancer. In this review, we compared Pathway Array analysis with other proteomic approaches in analyzing protein network involved in cancer and its utility serving as cancer biomarkers in diagnosis, prognosis and therapeutic target identification. With the advent of bioinformatics, constructing high complexity signaling networks is possible. As the use of signaling network-based cancer diagnosis, prognosis and treatment is anticipated in the near future, medical and scientific communities should be prepared to apply these techniques to further enhance personalized medicine.


Expression of apolipoprotein A-I in rabbit carotid endothelium protects against atherosclerosis.

  • Rowan Flynn‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2011‎

Expression of atheroprotective genes in the blood vessel wall is potentially an effective means of preventing or reversing atherosclerosis. Development of this approach has been hampered by lack of a suitable gene-transfer vector. We used a helper-dependent adenoviral (HDAd) vector to test whether expression of apolipoprotein A-I (apoA-I) in the artery wall could retard the development of atherosclerosis in hyperlipidemic rabbits. Carotid arteries were infused with an HDAd expressing rabbit apoA-I or a "null" HDAd and harvested 2 and 4 weeks later. ApoA-I mRNA and protein were detected only in HDAdApoAI arteries. Lesion size, lipid and macrophage content, and adhesion molecule expression were similar in both groups at 2 weeks. Between 2 and 4 weeks, most of these measures of atherosclerosis increased in HDAdNull arteries, but were stable or decreased in HDAdApoAI arteries (P ≤ 0.04 for all end points in 4-week HDAdApoAI versus HDAdNull arteries). A longer-term study in chow-fed rabbits revealed persistence of HDAd vector DNA and apoA-I expression for ≥48 weeks, with stable vector DNA content and apoA-I expression from 4 to 48 weeks. Expression of apoA-I in arterial endothelium significantly retards atherosclerosis. HDAd provides prolonged, stable expression of a therapeutic transgene in the artery wall.


Global analysis of fungal morphology exposes mechanisms of host cell escape.

  • Teresa R O'Meara‎ et al.
  • Nature communications‎
  • 2015‎

Developmental transitions between single-cell yeast and multicellular filaments underpin virulence of diverse fungal pathogens. For the leading human fungal pathogen Candida albicans, filamentation is thought to be required for immune cell escape via induction of an inflammatory programmed cell death. Here we perform a genome-scale analysis of C. albicans morphogenesis and identify 102 negative morphogenetic regulators and 872 positive regulators, highlighting key roles for ergosterol biosynthesis and N-linked glycosylation. We demonstrate that C. albicans filamentation is not required for escape from host immune cells; instead, macrophage pyroptosis is driven by fungal cell-wall remodelling and exposure of glycosylated proteins in response to the macrophage phagosome. The capacity of killed, previously phagocytized cells to drive macrophage lysis is also observed with the distantly related fungal pathogen Cryptococcus neoformans. This study provides a global view of morphogenetic circuitry governing a key virulence trait, and illuminates a new mechanism by which fungi trigger host cell death.


From fructans to difructose dianhydrides.

  • Xiao Wang‎ et al.
  • Applied microbiology and biotechnology‎
  • 2015‎

Fructans are the polymers of fructose molecules, normally having a sucrose unit at what would otherwise be the reducing terminus. Inulin and levan are two basic types of simple fructan, which contain β-(2, 1) and β-(2, 6) fructosyl-fructose linkage, respectively. Fructans not only can serve as soluble dietary fibers for food industry, but also may be biologically converted into high-value products, especially high-fructose syrup and fructo-oligosaccharides. In recent years, much attention has been focused on production of difructose dianhydrides (DFAs) from fructans. DFAs are cyclic disaccharides consisting of two fructose units with formation of two reciprocal glycosidic linkages. They are expected to have promising properties and beneficial effects on human health. DFAs can be produced from fructans by fructan fructotransferases. Inulin fructotransferase (IFTase) (DFA III-forming) and IFTase (DFA I-forming) catalyze the DFA III and DFA I production from inulin, respectively, and levan fructotransferase (LFTase) (DFA IV-forming) catalyzes the production of DFA IV from levan. In this article, the DFA-producing microorganisms are summarized, relevant studies on various DFAs-producing enzymes are reviewed, and especially, the comparisons of the enzymes are presented in detail.


BRD4 inhibitor inhibits colorectal cancer growth and metastasis.

  • Yuan Hu‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Post-translational modifications have been identified to be of great importance in cancers and lysine acetylation, which can attract the multifunctional transcription factor BRD4, has been identified as a potential therapeutic target. In this paper, we identify that BRD4 has an important role in colorectal cancer; and that its inhibition substantially wipes out tumor cells. Treatment with inhibitor MS417 potently affects cancer cells, although such effects were not always outright necrosis or apoptosis. We report that BRD4 inhibition also limits distal metastasis by regulating several key proteins in the progression of epithelial-to-mesenchymal transition (EMT). This effect of BRD4 inhibitor is demonstrated via liver metastasis in animal model as well as migration and invasion experiments in vitro. Together, our results demonstrate a new application of BRD4 inhibitor that may be of clinical use by virtue of its ability to limit metastasis while also being tumorcidal.


Global epigenetic regulation of microRNAs in multiple myeloma.

  • Wenjing Zhang‎ et al.
  • PloS one‎
  • 2014‎

Epigenetic changes frequently occur during tumorigenesis and DNA hypermethylation may account for the inactivation of tumor suppressor genes in cancer cells. Studies in Multiple Myeloma (MM) have shown variable DNA methylation patterns with focal hypermethylation changes in clinically aggressive subtypes. We studied global methylation patterns in patients with relapsed/refractory MM and found that the majority of methylation peaks were located in the intronic and intragenic regions in MM samples. Therefore, we investigated the effect of methylation on miRNA regulation in MM. To date, the mechanism by which global miRNA suppression occurs in MM has not been fully described. In this study, we report hypermethylation of miRNAs in MM and perform confirmation in MM cell lines using bisulfite sequencing and methylation-specific PCR (MSP) in the presence or absence of the DNA demethylating agent 5-aza-2'-deoxycytidine. We further characterized the hypermethylation-dependent inhibition of miR-152, -10b-5p and -34c-3p which was shown to exert a putative tumor suppressive role in MM. These findings were corroborated by the demonstration that the same miRNAs were down-regulated in MM patients compared to healthy individuals, alongside enrichment of miR-152-, -10b-5p, and miR-34c-3p-predicted targets, as shown at the mRNA level in primary MM cells. Demethylation or gain of function studies of these specific miRNAs led to induction of apoptosis and inhibition of proliferation as well as down-regulation of putative oncogene targets of these miRNAs such as DNMT1, E2F3, BTRC and MYCBP. These findings provide the rationale for epigenetic therapeutic approaches in subgroups of MM.


Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney.

  • Bo Jiang‎ et al.
  • Scientific reports‎
  • 2016‎

Multicopper ferroxidases (MCFs) play an important role in cellular iron homeostasis. However, the role of MCFs in renal metabolism remains unclear. We used Hephaestin (Heph) and Ceruloplasmin (Cp) single or double (Heph/Cp) knockout (KO) mice to study the roles of MCFs in the kidney. Renal iron levels and the expression of iron metabolism genes were examined. The non-heme iron content both in the renal cortex and medulla of Heph/Cp KO mice was significantly increased. Perls' Prussian blue staining showed iron accumulation on the apical side of renal tubular cells in Heph/Cp KO mice. A significant increase in ferritin protein expression was also observed in the renal medulla and cortex of Heph/Cp KO mice. Both DMT1 and TfR1 protein expression were significantly decreased in the renal medulla of Heph/Cp KO mice, while the expression of DMT1 protein was significantly increased in the renal cortex of these animals. Significant increase in proteinuria and total urinary iron was observed in the double knockout mice, and this was associated with compromised structural integrity. These results suggest that KO of both the HEPH and CP genes leads to kidney iron deposition and toxicity, MCFs could protect kidney against a damage from iron excess.


Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway.

  • Bo Jiang‎ et al.
  • British journal of pharmacology‎
  • 2017‎

Depression is a neuropsychiatric disorder accompanied by a decrease in the brain-derived neurotrophic factor (BDNF) signalling cascade in the hippocampus. Fenofibrate is a selective agonist of PPAR-α. In this study, we investigated the antidepressant-like effects of fenofibrate in C57BL/6J mice.


Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson's disease induced by 6-hydroxydopamine.

  • Jian Yu Wang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

Pseudoginsenoside-F11 (PF11), a component of Panax quinquefolism (American ginseng), plays a lot of beneficial effects on disorders of central nervous system. In this paper, the neuroprotective effect of PF11 on Parkinson's disease (PD) and the possible mechanism were investigated in a rat PD model. PF11 was orally administered at 3, 6, and 12 mg/kg once daily for a period of 2 weeks before and 1 week after the unilateral lesion of left medial forebrain bundle (MFB) induced by 6-hydroxydopamine (6-OHDA). The results showed that PF11 markedly improved the locomotor, motor balance, coordination, and apomorphine-induced rotations in 6-OHDA-lesioned rats. The expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and the content of extracellular dopamine (DA) in striatum were also significantly increased after PF11 treatment. Moreover, significant reduction in the levels of striatal extracellular hydroxyl radical ( (∙) OH), detected as 2,3- and 2,5-dihydroxy benzoic acid (2,3- and 2,5-DHBA), and increase in the level of striatal extracellular ascorbic acid (AA) were observed in the PF11-treated groups compared with 6-OHDA-lesioned rats. Taken together, we propose that PF11 has potent anti-Parkinson property possibly through inhibiting free radical formation and stimulating endogenous antioxidant release.


Identification of a Novel Di-D-Fructofuranose 1,2':2,3' Dianhydride (DFA III) Hydrolysis Enzyme from Arthrobacter aurescens SK8.001.

  • Shuhuai Yu‎ et al.
  • PloS one‎
  • 2015‎

Previously, a di-D-fructofuranose 1,2':2,3' dianhydride (DFA III)-producing strain, Arthrobacter aurescens SK8.001, was isolated from soil, and the gene cloning and characterization of the DFA III-forming enzyme was studied. In this study, a DFA III hydrolysis enzyme (DFA IIIase)-encoding gene was obtained from the same strain, and the DFA IIIase gene was cloned and expressed in Escherichia coli. The SDS-PAGE and gel filtration results indicated that the purified enzyme was a homotrimer holoenzyme of 145 kDa composed of subunits of 49 kDa. The enzyme displayed the highest catalytic activity for DFA III at pH 5.5 and 55°C, with specific activity of 232 U mg-1. Km and Vmax for DFA III were 30.7 ± 4.3 mM and 1.2 ± 0.1 mM min-1, respectively. Interestingly, DFA III-forming enzymes and DFA IIIases are highly homologous in amino acid sequence. The molecular modeling and docking of DFA IIIase were first studied, using DFA III-forming enzyme from Bacillus sp. snu-7 as a template. It was suggested that A. aurescens DFA IIIase shared a similar three-dimensional structure with the reported DFA III-forming enzyme from Bacillus sp. snu-7. Furthermore, their catalytic sites may occupy the same position on the proteins. Based on molecular docking analysis and site-directed mutagenesis, it was shown that D207 and E218 were two potential critical residues for the catalysis of A. aurescens DFA IIIase.


Lgr5 Methylation in Cancer Stem Cell Differentiation and Prognosis-Prediction in Colorectal Cancer.

  • Shasha Su‎ et al.
  • PloS one‎
  • 2015‎

Leucine-rich-repeat-containing G-protein-coupled receptor 5 (lgr5) is a candidate marker for colorectal cancer stem cells (CSC). In the current study, we investigated the methylation status within thelgr5 promoter and evaluated its relationship with CSC differentiation, prognosis for colorectal cancer, and its clinicopathological features.


Genome-wide association study identifies two new susceptibility loci for colorectal cancer at 5q23.3 and 17q12 in Han Chinese.

  • Kewei Jiang‎ et al.
  • Oncotarget‎
  • 2015‎

Genome-wide association studies (GWAS) have reported a number of loci harboring common variants that influence risk of colorectal cancer (CRC) in European descent. But all the SNPs identified explained a small fraction of total heritability. To identify more genetic factors that modify the risk of CRC, especially Chinese Han specific, we conducted a three-stage GWAS including a screening stage (932 CRC cases and 966 controls) and two independent validations (Stage 2: 1,759 CRC cases and 1,875 controls; Stage 3: 943 CRC cases and 1,838 controls). In the combined analyses, we discovered two novel loci associated with CRC: rs12522693 at 5q23.3 (CDC42SE2-CHSY3, OR = 1.31, P = 2.08 × 10-8) and rs17836917 at 17q12 (ASIC2-CCL2, OR = 0.75, P = 4.55 × 10-8). Additionally, we confirmed two previously reported risk loci, rs6983267 at 8q24.21 (OR = 1.17, P = 7.17 × 10-7) and rs10795668 at 10p14 (OR = 0.86, P = 2.96 × 10-6) in our cohorts. These results bring further insights into the CRC susceptibility and advance our understanding on etiology of CRC.


CD24 promoted cancer cell angiogenesis via Hsp90-mediated STAT3/VEGF signaling pathway in colorectal cancer.

  • Xinying Wang‎ et al.
  • Oncotarget‎
  • 2016‎

CD24 is involved in tumor progression of various cancers, but the effects of CD24 on tumor angiogenesis in colorectal cancer are still unknown. We aimed to investigate the underlying mechanism and role of CD24 on colorectal cancer (CRC) angiogenesis. Our data showed that the microvessal density (MVD) was related to the expression of CD24 in primary and metastasis CRC. Silencing of CD24 could dramatically decrease human umbilical vein endothelial cell (HUVEC) migration, invasion and tubule formation, but trivially affected cell proliferation. We also mechanically showed that silencing CD24 could downregulate the expression of VEGF via inhibiting the phosphorylation and translocation of STAT3. Moreover, Hsp90 was identified as the down-interaction protein of CD24 with co-immunoprecipitation assay and systematic mass spectrometry. Immunofluorescence results showed Hsp90 partly co-localized with CD24 in CRC cell membrane and there was a positive correlation between CD24 and Hsp90 expression in CRC tissues. We gradually evidenced that Hsp90 modulated the stability and degradation of CD24 in a proteasome-depended manner, and transferred the signal transmission from CD24 to STAT3. 17-AAG, a specific Hsp90, could abrogate the CD24 induce- HUVEC migration, invasion and tubule formation in vitro and in vivo. Collectively, our results suggested that CD24 induced CRC angiogenesis in Hsp90-dependent manner and activated STAT3-mediated transcription of VEGF. We provided a new insight into the regulation mechanism of tumor angiogenesis by exploring the role of CD24 in angiogenesis.


Tspan5 is an independent favourable prognostic factor and suppresses tumour growth in gastric cancer.

  • Peirong He‎ et al.
  • Oncotarget‎
  • 2016‎

Tetraspanins are believed to interact with specific partner proteins forming tetraspanin-enriched microdomains and regulate some aspects of partner protein functions. However, the role of Tspan5 during pathological processes, particularly in cancer biology, remains unknown. Here we report that Tspan5 is significantly downregulated in gastric cancer (GC) and closely associated with clinicopathological features including tumour size and TNM stage. The expression of Tspan5 is inversely correlated with patient overall survival and is an independent prognostic factor in GC. Upregulation of Tspan5 in tumour cells results in inhibition of cell proliferation and colony formation in vitro and suppression of xenograft growth of GC by reducing tumour cell proliferation in vivo. Thus, Tspan5 functions as a tumour suppressor in stomach to control the tumour growth. Mechanistically, Tspan5 inhibits the cell cycle transition from G1-S phase by increasing the expression of p27 and p15 and decreasing the expression of cyclin D1, CDK4, pRB and E2F1. The correlation of Tspan5 expression with the expression of p27, p15, cyclin D1, CDK4, pRB and E2F1 in vivo are also revealed in xenografted tumours. Reconstitution of either cyclin D1 or CDK4 in Tspan5-overexpressing GC cells rescues the inhibitory phenotype produced by Tspan5, suggesting that cyclin D1/CDK4 play a dominant role in mediating the suppression of tumour growth by Tspan5 in GC. Our results suggest that Tspan5 may serve as a prognostic biomarker for predicting outcome of GC patients and provide new insights into the pathogenesis of GC and rational for the development of clinical intervention strategies against GC.


Antidepressant-Like Effects of GM1 Ganglioside Involving the BDNF Signaling Cascade in Mice.

  • Bo Jiang‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2016‎

Depression is a serious psychiatric disorder that easily causes physical impairments and a high suicide rate. Monosialotetrahexosylganglioside is a crucial ganglioside for the central nervous system and has been reported to affect the function of the brain derived neurotrophic factor system. This study is aimed to evaluate whether monosialotetrahexosylganglioside has antidepressant-like effects.


MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer.

  • Yu Zhang‎ et al.
  • Molecular cancer‎
  • 2012‎

MicroRNAs (miRNAs) have been suggested to play a vital role in tumor initiation and progression by negatively regulating oncogenes and tumor suppressors. Quite recently, studies have identified some miRNAs operating to promote or suppress tumor invasion or metastasis via regulating metastasis-related genes, providing potential therapeutic targets on anti-metastasis strategy. Metastasis-associated in colon cancer-1 (MACC1) has been newly identified to express highly in colorectal cancer (CRC) and promote tumor metastasis through transactivating metastasis-inducing HGF/MET signaling pathway. In this study, we investigated whether miRNA 143 is involved in the regulation of MACC1 and thus plays a functional role in CRC.


A novel mutation in STK11 gene is associated with Peutz-Jeghers syndrome in Chinese patients.

  • Zhiqing Wang‎ et al.
  • BMC medical genetics‎
  • 2011‎

Peutz-Jeghers syndrome (PJS) is caused by mutations in the tumor suppressor gene, STK11, and is characterized by gastrointestinal hamartomas, melanin spots on the lips, and an increased risk of developing cancer.


Lyn is involved in CD24-induced ERK1/2 activation in colorectal cancer.

  • Ning Su‎ et al.
  • Molecular cancer‎
  • 2012‎

CD24 expression is associated with human colorectal cancer (CRC). Our previous data indicated that CD24 promoted the proliferation and invasion of colorectal cancer cells through the activation of ERK1/2. Since Src family kinases are frequently deregulated in CRC and closely related to the MAPK signaling pathway, we investigated the impact of Lyn, an important member of SFKs, on CD24-induced ERK1/2 activation in CRC.


Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus.

  • Natalie D Fedorova‎ et al.
  • PLoS genetics‎
  • 2008‎

We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".


Z-Guggulsterone Produces Antidepressant-Like Effects in Mice through Activation of the BDNF Signaling Pathway.

  • Feng-Guo Liu‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2017‎

Z-guggulsterone, an active compound extracted from the gum resin of the tree Commiphora mukul, has been shown to improve animal memory deficits via activating the brain-derived neurotrophic factor signaling pathway. Here, we investigated the antidepressant-like effect of Z-guggulsterone in a chronic unpredictable stress mouse model of depression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: