Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

High glucose attenuates VEGF expression in rat multipotent adult progenitor cells in association with inhibition of JAK2/STAT3 signalling.

  • Zehao Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

This study was to investigate the effect of high glucose (HG) on vascular endothelial growth factor (VEGF) expression in bone marrow stem cells and JAK2/STAT-3 signalling. Adult rat bone marrow multipotent progenitor cells (rMAPCs) were cultured to evaluate VEGF expression (both mRNA and protein) with or without exposure to HG for up to 48 hrs using RT-PCR and ELISA. JAK2 and STAT3 phosphorylation in rMAPCs was analysed by Western blotting. With cells in normal media, VEGF mRNA level after 24 hrs of culture was significantly increased by 15 times over baseline (day 0) with detectable level of VEGF protein intracellularly using immunofluorescence staining. Although there was no measurable VEGF in the media after 24 hrs of culture, a significant amount of VEGF was detected in the media after 48 hrs of incubation. VEGF expression was associated with constitutive activation of JAK2 and STAT3 in rMAPCs. However, VEGF mRNA level was significantly reduced without detectable VEGF in the media when rMAPCs exposed to HG for 48 hrs. Tyrosine-phosphorylation of JAK2 and STAT3 and nuclear translocation of phosphorylated STAT3 were significantly decreased in the cells exposed to HG for 48 hrs. When JAK2 and STAT3 phosphorylation was blocked by the selective inhibitor AG490, VEGF mRNA level was significantly decreased in rMAPCs in normal media by 80% with no detectable VEGF in the media. VEGF expression was significantly suppressed in rMAPCs cultured in HG media that was further reduced by AG490. VEGF expression in rMAPCs is impaired by HG possibly through inhibition of JAK2/STAT3 signalling.


CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways.

  • Yajuan Ni‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Persistent cardiac Ca2+ /calmodulin-dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia-induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre-treated by CaMKII inhibitor KN-93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT-PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre-treated by ISO and KN-93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p-VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN-93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN-93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p-VEGFR2 and STAT3 were down-regulated by KN-93; mtROS level was severely reduced by KN-93. We concluded that KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways.


Fibroblast growth factor homologous factor 1 stimulates Leydig cell regeneration from stem cells in male rats.

  • Jiaying Mo‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up-regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post-EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle-stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA-labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS-treated testis.


Effects of autophagy on apoptosis of articular chondrocytes in adjuvant arthritis rats.

  • Renpeng Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that eventually leads to joint deformities and loss of joint function. Previous studies have demonstrated a close relationship between autophagy and the development of RA. Although autophagy and apoptosis are two different forms of programmed death, the relationship between them in relation to RA remains unclear. In this study, we explored the effect of autophagy on apoptosis of articular chondrocytes in vivo and in vitro. Adjuvant arthritis (AA) and acid-induced primary articular chondrocyte apoptosis were used as in vivo and in vitro models, respectively. Articular chondrocyte autophagy and apoptosis were both observed dynamically in AA rat articular cartilage at different stages (15 days, 25 days and 35 days). Moreover, chondrocyte apoptosis and articular cartilage injury in AA rats were increased by the autophagy inhibitor 3-methyladenine (3-MA) and decreased by the autophagy activator rapamycin. In addition, pre-treatment with 3-MA increased acid-induced chondrocyte apoptosis, while pre-treatment with rapamycin reduced acid-induced chondrocyte apoptosis in vitro. These results suggest that autophagy might be a potential target for the treatment of RA.


Mechanisms of enhanced antiglioma efficacy of polysorbate 80-modified paclitaxel-loaded PLGA nanoparticles by focused ultrasound.

  • Yingjia Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

The presence of blood-brain barrier (BBB) greatly limits the availability of drugs and their efficacy against glioma. Focused ultrasound (FUS) can induce transient and local BBB opening for enhanced drug delivery. Here, we developed polysorbate 80-modified paclitaxel-loaded PLGA nanoparticles (PS-80-PTX-NPs, PPNP) and examined the enhanced local delivery into the brain for glioma treatment by combining with FUS. Our result showed PPNP had good stability, fast drug release rate and significant toxicity to glioma cells. Combined with FUS, PPNP showed a stronger BBB permeation efficiency both in the in vitro and in vivo BBB models. Mechanism studies revealed the disrupted tight junction, reduced P-glycoprotein expression and ApoE-dependent PS-80 permeation collectively contribute to the enhanced drug delivery, resulting in significantly stronger antitumour efficacy and longer survival time in the tumour-bearing mice. Our study provided a new strategy to efficiently and locally deliver drugs into the brain to treat glioma.


Vascular endothelial growth factor A is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma.

  • Yuchen Qi‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2023‎

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths among cancer patients. Vascular endothelial growth factor A (VEGFA) is involved in regulating biological processes, such as angiogenesis and vascular permeability, and is very closely related to the pathogenesis of various tumours, especially vascular-rich, solid tumours. Clinical data of patients with HCC and other tumours were analysed through public databases, such as the TCGA database, Gene Expression Omnibus database, Human Protein Atlas database, STRING, Tumour Immune Estimation Resource and Kaplan-Meier Plotter. The tumour tissues and adjacent normal tissues of patients with HCC from Hunan Provincial People's Hospital were collected to verify the expression of VEGFA by immunohistochemistry, immunofluorescence, Western blotting and qPCR. VEGFA expression is elevated in multiple tumour types and correlates with the prognosis of tumour patients. VEGFA is involved in regulating the tumour microenvironment and immune cell function in tumour development. Inhibition of VEGFA reduces proliferation, invasion, and migration and promotes apoptosis in HCC cells. VEGFA is a potential predictive biomarker for the diagnosis and prognosis of HCC.


Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol.

  • Yajuan Ni‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats.


PTCSC3-mediated glycolysis suppresses thyroid cancer progression via interfering with PGK1 degradation.

  • Bo Jiang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

The Warburg effect (aerobic glycolysis), a hallmark of cancer, serves as a promising target for diagnosis and therapy. Growing evidence indicates that long non-coding RNAs (lncRNAs) play an important role in aerobic glycolysis of various tumours. However, the correlation between lncRNAs and glycolysis in thyroid cancer cells is still poorly understood. In this study, we showed that lncRNA papillary thyroid cancer susceptibility candidate 3 (PTCSC3) was significantly downregulated in papillary thyroid carcinoma (PTC). Overexpression of PTCSC3 significantly inhibited the aerobic glycolysis and tumour growth of PTC cells. Consistently, PTCSC3 overexpression suppressed tumour progress in vivo. Mechanistically, PTCSC3 inhibits aerobic glycolysis and proliferation of PTC by directly interacting with PGK1, a key enzyme in glycolytic pathway. As a result, PTCSC3 performs its role in PTC development via PGK1 and may be a potential therapeutic target for PTC treatment.


Bone marrow mesenchymal stem cells enhance autophagy and help protect cells under hypoxic and retinal detachment conditions.

  • Xin Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Our study aimed to evaluate the protective role and mechanisms of bone marrow mesenchymal stem cells (BMSCs) in hypoxic photoreceptors and experimental retinal detachment. The cellular morphology, viability, apoptosis and autophagy of hypoxic 661w cells and cells cocultured with BMSCs were analysed. In retinal detachment model, BMSCs were intraocularly transplanted, and then, the retinal morphology, outer nuclear layer (ONL) thickness and rhodopsin expression were studied as well as apoptosis and autophagy of the retinal cells. The hypoxia-induced apoptosis of 661w cells obviously increased together with autophagy levels increasing and peaking at 8 hours after hypoxia. Upon coculturing with BMSCs, hypoxic 661w cells had a better morphology and fewer apoptosis. After autophagy was inhibited, the apoptotic 661w cells under the hypoxia increased, and the cell viability was reduced, even in the presence of transplanted BMSCs. In retina-detached eyes transplanted with BMSCs, the retinal ONL thickness was closer to that of the normal retina. After transplantation, apoptosis decreased significantly and retinal autophagy was activated in the BMSC-treated retinas. Increased autophagy in the early stage could facilitate the survival of 661w cells under hypoxic stress. Coculturing with BMSCs protects 661w cells from hypoxic damage, possibly due to autophagy activation. In retinal detachment models, BMSC transplantation can significantly reduce photoreceptor cell death and preserve retinal structure. The capacity of BMSCs to reduce retinal cell apoptosis and to initiate autophagy shortly after transplantation may facilitate the survival of retinal cells in the low-oxygen and nutrition-restricted milieu after retinal detachment.


A risk signature with four autophagy-related genes for predicting survival of glioblastoma multiforme.

  • Yulin Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Glioblastoma multiforme (GBM) is a devastating brain tumour without effective treatment. Recent studies have shown that autophagy is a promising therapeutic strategy for GBM. Therefore, it is necessary to identify novel biomarkers associated with autophagy in GBM. In this study, we downloaded autophagy-related genes from Human Autophagy Database (HADb) and Gene Set Enrichment Analysis (GSEA) website. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed to identify genes for constructing a risk signature. A nomogram was developed by integrating the risk signature with clinicopathological factors. Time-dependent receiver operating characteristic (ROC) curve and calibration plot were used to evaluate the efficiency of the prognostic model. Finally, four autophagy-related genes (DIRAS3, LGALS8, MAPK8 and STAM) were identified and were used for constructing a risk signature, which proved to be an independent risk factor for GBM patients. Furthermore, a nomogram was developed based on the risk signature and clinicopathological factors (IDH1 status, age and history of radiotherapy or chemotherapy). ROC curve and calibration plot suggested the nomogram could accurately predict 1-, 3- and 5-year survival rate of GBM patients. For function analysis, the risk signature was associated with apoptosis, necrosis, immunity, inflammation response and MAPK signalling pathway. In conclusion, the risk signature with 4 autophagy-related genes could serve as an independent prognostic factor for GBM patients. Moreover, we developed a nomogram based on the risk signature and clinical traits which was validated to perform better for predicting 1-, 3- and 5-year survival rate of GBM.


TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice.

  • Xin Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

The abundance of inflammatory mediators in injured joint indicates innate immune reactions activated during temporomandibular joint osteoarthritis (TMJOA) progression. Toll-like receptor 4 (TLR4) can mediate innate immune reaction. Herein, we aimed to investigate the expression profile and effect of TLR4 in the cartilage and subchondral bone of the discectomy-induced TMJOA mice. The expression of TLR4 and NFκB p65 in the synovium of TMJOA patients was measured by immunohistochemistry, Western blotting and RT-PCR. H&E and Masson staining were utilized to assess the damage of cartilage and subchondral bone of the discectomy-induced TMJOA mice. A TLR4 inhibitor, TAK-242, was used to assess the effect of TLR4 in the cartilage and subchondral bone of the discectomy-induced TMJOA mice by Safranin O, micro-CT, immunofluorescence and immunohistochemistry. Western blotting was used to quantify the expression and effect of TLR4 in IL-1β-induced chondrocytes. The expression of TLR4 and NFκB p65 was elevated in the synovium of TMJOA patients, compared with the normal synovium. TLR4 elevated in the damaged cartilage and subchondral bone of discectomy-induced TMJOA mice, and the rate of TLR4 expressing chondrocytes positively correlated with OA score. Intraperitoneal injections of TAK-242 ameliorate the extent of TMJOA. Furthermore, TLR4 promotes the expression of MyD88/NFκB, pro-inflammatory and catabolic mediators in cartilage of discectomy-induced TMJOA. Besides, TLR4 participates in the production of MyD88/NFκB, pro-inflammatory and catabolic mediators in IL-1β-induced chondrocytes. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice through activation of MyD88/NFκB and release of pro-inflammatory and catabolic mediators.


Exosomal miRNAs as circulating biomarkers for prediction of development of haematogenous metastasis after surgery for stage II/III gastric cancer.

  • Xin Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Exosomes secreted by living cancer cells can regulate metastasis. Exosomal miRNAs can reflect pathological conditions of the original cancer cells. Therefore, we aim to identify exosomal miRNAs as circulating biomarkers for haematogenous metastasis of gastric cancer. Pre-treatment serum samples of eighty-nine patients with stage II/III gastric cancer were collected. Thirty-four of them developed haematogenous metastasis after surgery and the other fifty-five did not. Extraction of exosomes was validated by western blot, transmission electron microscopy and nanoparticle tracking analysis. MiRNA qPCR array was performed in three matched pairs of samples. Internal control was selected from PCR array and validated in the remaining samples. Expressions of exosomal miRNAs were evaluated in the remaining samples by RT-qPCR, as well as in gastric cancer tissue samples and cell culture medium. Expression levels of exosomal miRNAs were analysed with clinical characteristics. The results indicated thirteen up-regulated and six down-regulated miRNAs were found after normalization. MiR-379-5p and miR-410-3p were significantly up-regulated in metastatic patients (P < .01). Higher expression of exosomal miR-379-5p or miR-410-3p showed shorter progression-free survival of the patients (P < .05). It was also found that miR-379-5p and miR-410-3p were down-regulated in gastric cancer tissue samples, while they were significantly up-regulated in gastric cancer cell culture medium compared with cancer cells. In conclusion, exosomal miRNAs are promising circulating biomarkers for prediction of development of haematogenous metastasis after surgery for stage II/III gastric cancer.


Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase.

  • Yunzhou Dong‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.


MicroRNA-301b-3p contributes to tumour growth of human hepatocellular carcinoma by repressing vestigial like family member 4.

  • Yang Guo‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR-301b-3p functions as a driver in various types of human cancer. However, the expression pattern of miR-301b-3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR-301b-3p expression was significantly up-regulated in HCC tissues compared to adjacent non-tumour tissues. Clinical association analysis revealed that the high level of miR-301b-3p closely correlated with large tumour size and advanced tumour-node-metastasis stages. Importantly, the high miR-301b-3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR-301b-3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR-301b-3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR-301b-3p directly bond to 3'UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down-regulated and inversely correlated with miR-301b-3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR-301b-3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR-301b-3p is highly expressed in HCC. miR-301b-3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.


Induced pluripotent stem cell-derived conditional medium promotes Leydig cell anti-apoptosis and proliferation via autophagy and Wnt/β-catenin pathway.

  • Xiaoling Guo‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Leydig cell transplantation is a better alternative in the treatment of androgen-deficient males. The main purpose of this study was to investigate the effects of induced pluripotent stem cell-derived conditioned medium (iPS-CM) on the anti-apoptosis, proliferation and function of immature Leydig cells (ILCs), and illuminate the underlying mechanisms. ILCs were exposed to 200 μmol/L hydrogen peroxide (H2 O2 ) for 24 hours with or without iPS-CM treatments. Cell apoptosis was detected by flow cytometric analysis. Cell proliferation was assessed using cell cycle assays and EdU staining. The steroidogenic enzyme expressions were quantified with Western blotting. The results showed that iPS-CM significantly reduced H2 O2 -induced ILC apoptosis through down-regulation of autophagic and apoptotic proteins LC3-I/II, Beclin-1, P62, P53 and BAX as well as up-regulation of BCL-2, which could be inhibited by LY294002 (25 μmol/L). iPS-CM could also promote ILC proliferation through up-regulation of β-catenin and its target proteins cyclin D1, c-Myc and survivin, but was inhibited by XAV939 (10 μmol/L). The level of bFGF in iPS-CM was higher than that of DMEM-LG. Exogenous bFGF (20 ng/mL) or Wnt signalling agonist lithium chloride (LiCl) (20 mmol/L) added into DMEM-LG could achieve the similar effects of iPS-CM. Meanwhile, iPS-CM could improve the medium testosterone levels and up-regulation of LHCGR, SCARB1, STAR, CYP11A1, HSD3B1, CYP17A1, HSD17B3 and SF-1 in H2 O2 -induced ILCs. In conclusion, iPS-CM could reduce H2 O2 -induced ILC apoptosis through the activation of autophagy, promote proliferation through up-regulation of Wnt/β-catenin pathway and enhance testosterone production through increasing steroidogenic enzyme expressions, which might be used in regenerative medicine for future.


Bone marrow cells are differentiated into MDSCs by BCC-Ex through down-regulating the expression of CXCR4 and activating STAT3 signalling pathway.

  • Quan-Wen Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Studies showed that the increase of myeloid-derived suppressor cells (MDSCs) in tumour microenvironment is closely related to the resistant treatment and poor prognosis of metastatic breast cancer. However, the effect of tumour-derived exosomes on MDSCs and its mechanism are not clear. Here, we reported that breast cancer cells (4T1)-secreted exosomes (BCC-Ex) were able to differentiate bone marrow cells into MDSCs and significantly inhibited the proliferation of T lymphocytes to provide an immunosuppressive microenvironment for cancer cells in vivo and in vitro. The number of MDSCs in bone marrow and spleen of 4T1 tumour-bearing mice and BCC-Ex infused mice was significantly higher than that of normal mice, whereas the number of T lymphocytes in spleen was significantly decreased. In addition, BCC-Ex markedly promoted the differentiation of MDSCs from bone marrow cells or bone marrow cells derived macrophages, seen as the increased expressions of MDSCs-related functional proteins Arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS). Furthermore, BCC-Ex significantly down-regulated the expressions of chemokine receptor CXCR4 and markedly up-regulated the levels of inflammatory cytokines IL-6 and IL-10 in bone marrow cells and macrophages and remarkably inhibited the division and proliferation of T cells. Importantly, CXCR4 agonist, CXCL12, could reverse the function of BCC-Ex, indicating that BCC-Ex-induced MDSCs might be dependent on the down-regulation of CXCR4. Western blot showed that BCC-Ex significantly promoted the phosphorylation of STAT3 in bone marrow cells, resulting in the inhibitions of the proliferation and apoptosis of bone marrow cells, and the aggravation of the differentiation of bone marrow cells into MDSCs.


miR-363-3p induces EMT via the Wnt/β-catenin pathway in glioma cells by targeting CELF2.

  • Bo Fan‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

In our previous study, we reported that CELF2 has a tumour-suppressive function in glioma. Here, we performed additional experiments to elucidate better its role in cancer. The expression profile of CELF2 was analysed by the GEPIA database, and Kaplan-Meier curves were used to evaluate the overall survival rates. Four different online databases were used to predict miRNAs targeting CELF2, and the luciferase assay was performed to identify the binding site. The biological effects of miR-363-3p and CELF2 were also investigated in vitro using MTT, Transwell, and flow cytometry assays. Western blotting, qPCR, and TOP/FOP flash dual-luciferase assays were performed to investigate the impact of miR-363-3p and CELF2 on epithelial-to-mesenchymal transition (EMT) and the Wnt/β-catenin pathway. The effect of miR-363-3p was also tested in vivo using a xenograft mouse model. We observed an abnormal expression pattern of CELF2 in glioma cells, and higher CELF2 expression correlated with better prognosis. We identified miR-363-3p as an upstream regulator of CELF2 and confirmed its direct binding to the 3'-untranslated region of CELF2. Cell function experiments showed that miR-363-3p affected multiple aspects of glioma cells. Suppressing miR-363-3p expression inhibited glioma cell proliferation and invasion, as well as promoted cell death via attenuating EMT and blocking the Wnt/β-catenin pathway. These effects could be abolished by the downregulation of CELF2. Treatment with ASO-miR-363-3p decreased tumour size and weight in nude mice. In conclusion, miR-363-3p induced the EMT, which resulted in increased migration and invasion and reduced apoptosis in glioma cell lines, via the Wnt/β-catenin pathway by targeting CELF2.


Theranostic nanosensitizers for highly efficient MR/fluorescence imaging-guided sonodynamic therapy of gliomas.

  • Hongmei Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Glioma is the most frequent primary brain tumour of the central nervous system. Its high aggressiveness and deep-seated brain lesion make it a great challenge to develop a non-invasive, precise and effective treatment approach. Here, we report a multifunctional theranostic agent that can integrate imaging and therapy into a single nano-platform for imaging-guided sonodynamic therapy (SDT). The SDT agents were fabricated by encapsulation of sinoporphyrin sodium (DVDMS) chelating with manganese ions into nanoliposomes (DVDMS-Mn-LPs). DVDMS-Mn-LPs are physiologically stable and biologically compatible, and they can produce singlet oxygen upon ultrasound irradiation to kill cancer cells. Both cell and animal studies demonstrated that SDT with DVDMS-Mn-LPs can significantly improve the antitumour growth efficiency even in the presence of skull. In addition, DVDMS-Mn-LPs are good for MR and fluorescence imaging. Thus, DVDMS-Mn-LPs reported here may provide a promising strategy for imaging-guided modality for glioma treatment.


Differentiation of human adipose derived stem cells into Leydig-like cells with molecular compounds.

  • Yong Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Leydig cells (LCs) are the primary source of testosterone in the testis, and testosterone deficiency caused by LC functional degeneration can lead to male reproductive dysfunction. LC replacement transplantation is a very promising approach for this disease therapy. Here, we report that human adipose derived stem cells (ADSCs) can be differentiated into Leydig-like cells using a novel differentiation method based on molecular compounds. The isolated human ADSCs expressed positive CD29, CD44, CD59 and CD105, negative CD34, CD45 and HLA-DR using flow cytometry, and had the capacity of adipogenic and osteogenic differentiation. ADSCs derived Leydig-like cells (ADSC-LCs) acquired testosterone synthesis capabilities, and positively expressed LC lineage-specific markers LHCGR, STAR, SCARB1, SF-1, CYP11A1, CYP17A1, HSD3B1 and HSD17B3 as well as negatively expressed ADSC specific markers CD29, CD44, CD59 and CD105. When ADSC-LCs labelled with lipophilic red dye (PKH26) were injected into rat testes which were selectively eliminated endogenous LCs using ethylene dimethanesulfonate (EDS, 75 mg/kg), the transplanted ADSC-LCs could survive and function in the interstitium of testes, and accelerate the recovery of blood testosterone levels and testis weights. These results demonstrated that ADSCs could be differentiated into Leydig-like cells by few defined molecular compounds, which might lay the foundation for further clinical application of ADSC-LC transplantation therapy.


IL-6 expression promoted by Poly(I:C) in cervical cancer cells regulates cytokine expression and recruitment of macrophages.

  • Xin Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Poly(I:C) is a promising adjuvant for cancer treatment vaccines to enhance the host anti-tumour immune response. However, the roles of poly(I:C) in the cervical cancer microenvironment and local immune reactions are not well understood. In this study, we investigated the roles of poly(I:C) in the cervical cancer. We analysed the cytokine transcription and secretion of cervical cancer cell lines and THP-1-derived macrophages after poly(I:C) treatment, respectively. These results revealed that IL-6 was significantly up-regulated, and this up-regulation was partly dose dependent. poly(I:C)-stimulated supernatant of cervical cancer cells promoted M1-type cytokine IL-1β and IL-6 expression of THP-1-derived macrophages, but inhibited the expression of M2-type cytokine, IL-10 and CCL22. The recruitment of THP-1-derived macrophages by poly(I:C)-stimulated cervical cancer cell supernatant was also enhanced. Inhibition of IL-6 expression in cervical cancer cells by siRNA transfection almost completely reversed the effects of poly(I:C) treatment. Finally, we found that phosphorylation of the NF-κB signalling pathway in cervical cancer cells occurred quickly after poly(I:C) treatment. Moreover, the NF-κB signalling pathway inhibitor PDTC significantly inhibited poly(I:C)-induced IL-6 expression. Taken together, these results suggest that poly(I:C) might regulate the effects of cervical cancer cells on tumour-infiltrated macrophages, and subsequently promote a pro-inflammatory tumour microenvironment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: